Article

Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease.

Dept. of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
Experimental Neurology (Impact Factor: 4.65). 05/2012; 236(2):249-58. DOI: 10.1016/j.expneurol.2012.05.011
Source: PubMed

ABSTRACT Profound disruptions of circadian rhythms and sleep/wake cycles constitute a major cause of institutionalization of AD patients. This study investigated whether a rodent model of AD, APP(NLH/NLH)/PS-1(P264L/264L) (APPxPS1) mice, exhibits circadian alterations. The APPxPS1 mice were generated using CD-1/129 mice and Cre-lox knock-in technology to "humanize" the mouse amyloid (A)β sequence and create a presenilin-1 mutation identified in familial early-onset AD patients. APPxPS1 and WT mice of several ages (~4, 11, and 15 months) were monitored for circadian rhythms in wheel running, cage activity, and sleep:wake behavior. After rhythm assessment, the mice were euthanized at zeitgeber time (ZT) 2 or 10 (i.e., 2 or 10 h after lights-on) and brains were dissected. Amyloidβ levels were measured in cortical samples and brain sections of the hypothalamus and hippocampus were prepared and used for in situ hybridization of circadian or neuropeptide genes. The most significant effects of the APPxPS1 transgenes were phase delays of ~2 h in the onset of daytime wakefulness bouts (P<0.005) and peak wakefulness (P<0.02), potentially relevant to phase delays previously reported in AD patients. However, genotype did not affect the major activity peaks or phases of wheel running, wake, or general movement, which were bimodal with dominant dawn and dusk activity. Expression of Period 2 in the suprachiasmatic nucleus was affected by ZT (P<0.0001) with a marginal interaction effect of age, genotype, and ZT (P<0.08). A separate analysis of the old animals indicated a robust interaction between ZT and genotype, as well as main effects of these parameters. Aging also altered sleep (e.g., bout length and amount of daytime sleep) and the amount of wheel running and cage activity. In conclusion, the APPxPS1 knock-in mice exhibit some alterations in their sleep:wake rhythm and clock gene expression, but do not show robust, genotype-related changes in activity rhythms. The prominent daytime activity peaks shown by the background strain complicate the use of these APPxPS1 knock-in mice for investigations of circadian activity rhythms in AD. In addition to this unusual activity pattern, lack of hyperactivity differentiates the APPxPS1 knock-in mice from other transgenic AD models.

0 Bookmarks
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circadian behavioural deficits, including sleep irregularity and restlessness in the evening, are a distressing early feature of Alzheimer's disease (AD). We have investigated these phenomena by studying the circadian behaviour of transgenic Drosophila expressing the amyloid beta peptide (Aβ). We find that Aβ expression results in an age-related loss of circadian behavioural rhythms despite ongoing normal molecular oscillations in the central clock neurones. Even in the absence of any behavioural correlate, the synchronised activity of the central clock remains protective, prolonging lifespan, in Aβ flies just as it does in control flies. Confocal microscopy and bioluminescence measurements of molecular clock function point to the output pathway as the main site of Aβ toxicity. In addition there appears to be significant non-cell autonomous Aβ toxicity resulting in morphological and likely functional signalling deficits in central clock neurones.
    Disease Models and Mechanisms 02/2014; · 4.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fortunate are those who rise out of bed to greet the morning light well rested with the energy and enthusiasm to drive a productive day. Others, however, depend on hypnotics for sleep and require stimulants to awaken lethargic bodies. Sleep/wake disruption is a common occurrence in healthy individuals throughout their lifespan and is also a comorbid condition to many diseases (neurodegenerative) and psychiatric disorders (depression and bipolar). There is growing concern that chronic disruption of the sleep/wake cycle contributes to more serious conditions including diabetes (type 2), cardiovascular disease, and cancer. A poorly functioning circadian system resulting in misalignments in the timing of clocks throughout the body may be at the root of the problem for many people. In this article we discuss environmental (light therapy) and lifestyle changes (scheduled meals, exercise, and sleep) as interventions to help fix a broken clock. We also discuss the challenges and potential for future development of pharmacological treatments to manipulate this key biological system.
    Trends in Pharmacological Sciences 10/2013; · 9.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Problems with sleep affect a large part of the general population, with more than half of all people in the United States reporting difficulties with sleep or insufficient sleep at various times and about 40 million affected chronically. Sleep is a complex physiologic process that is influenced by many internal and environmental factors, and problems with sleep are often related to specific personal circumstances or are based on subjective reports from the affected person. Although human subjects are used widely in the study of sleep and sleep disorders, the study of animals has been invaluable in developing our understanding about the physiology of sleep and the underlying mechanisms of sleep disorders. Historically, the use of animals for the study of sleep disorders has arguably been most fruitful for the condition of narcolepsy, in which studies of dogs and mice revealed previously unsuspected mechanisms for this condition. The current overview considers animal models that have been used to study 4 of the most common human sleep disorders-insomnia, narcolepsy, restless legs syndrome, and sleep apnea-and summarizes considerations relevant to the use of animals for the study of sleep and sleep disorders. Animal-based research has been vital to the elucidation of mechanisms that underlie sleep, its regulation, and its disorders and undoubtedly will remain crucial for discovering and validating sleep mechanisms and testing interventions for sleep disorders.
    Comparative medicine 01/2013; 63(2):91-104. · 1.12 Impact Factor

Full-text

View
39 Downloads
Available from
May 22, 2014

Similar Publications