MiR-155 modulates TNF-α-inhibited osteogenic differentiation by targeting SOCS1 expression

Department of Prosthodontics, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Bone (Impact Factor: 3.97). 05/2012; 51(3):498-505. DOI: 10.1016/j.bone.2012.05.013
Source: PubMed


Bone morphogenetic proteins (BMPs) can induce ectopic bone formation, which is negatively regulated by inflammatory cytokines, such as tumor necrosis factor (TNF)-α. Recently, miR-155 has been reported to regulate the transforming growth factor (TGF)-β signaling pathway and inflammatory responses. However, whether and how miR-155 modulates TNF-α-regulated osteogenic differentiation have not been explored. In this study, we demonstrated that miR-155 was involved in TNF-α-mediated inhibition of osteogenic differentiation. Knockdown of miR-155 partially mitigated the inhibition of TNF-α on BMP-2-induced osteogenic differentiation. Bioinformatic analysis identified the candidate target site in the 3' untranslated region (3'UTR) of SOCS1. Knockdown of miR-155 increased SOCS1 protein expression during TNF-α stimulation in MC3T3-E1 cells. And transfection with miR-155 inhibited the wild-type, but not the mutant, 3'UTR of SOCS1-regulated luciferase activity, indicating that SOCS1 is a direct target of miR-155 in osteoblast cells. Furthermore, miR-155 expression could be induced by TNF-α through the JNK pathway. As the result of increased SOCS1 expression, knockdown of miR-155 significantly reduced the JNK/c-Jun activation. In addition, transfection of SOCS1 siRNA or overexpression of SOCS1 coding region could narrow the differences of alkaline phosphatase (ALP) and osteocalcin (OSC) expression between the control and miR-155 inhibitor transfected cells. These data indicated that miR-155 modulates TNF-α-regulated osteogenic differentiation by targeting SOCS1, at least partially through the SAPK/JNK pathway. These findings may provide new insights into understanding the regulatory role of miR-155 in the process of osteogenic differentiation in inflammatory condition.

24 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, various micro(mi)RNAs have been found deregulated in the setting of rheumatoid arthritis (RA), but their role in the pathogenesis of this disease remains a matter of debate. In the meanwhile, increasing evidence indicates a defective function of regulatory T cells (Tregs) in RA. This review discusses relevant studies addressing the function of Tregs and Cytotoxic T-Lymphocyte Antigen 4 in RA, provides recent data on the role of miRNAs for Tregs homeostasis, and focuses on the role of miR-155 in Tregs. In a final perspective section we discuss the potential impact of therapeutic miR-155 modulation in RA.
    Clinical Immunology 03/2013; 148(1):56-65. DOI:10.1016/j.clim.2013.03.010 · 3.67 Impact Factor
  • Source
    Journal of the American College of Cardiology 08/2013; 63(1). DOI:10.1016/j.jacc.2013.07.073 · 16.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have demonstrated that mesenchymal stem cells from multiple myeloma (MM) patients (MM-hMSCs) display a distinctive gene expression profile, an enhanced production of cytokines and an impaired osteogenic differentiation ability compared to normal donors (ND-hMSCs). However, the underlying molecular mechanisms are unclear. In the present study, we observed that MM-hMSCs exhibited an abnormal upregulation of miR-135b, showing meanwhile an impaired osteogenic differentiation and a decrease of SMAD5 expression, which is the target of miR-135b involved in osteogenesis. By gain and loss of function studies we confirmed that miR-135b negatively regulated hMSCs osteogenesis. We also found that MM cell-produced factors stimulated ND-hMSCs to upregulate the expression of miR-135b. Importantly, treatment with a miR-135b inhibitor promoted osteogenic differentiation in MM-hMSCs. Finally, we observed that MM cell-derived soluble factors could induce an upregulation of miR-135b expression in ND-hMSCs in an indirect coculture system and the miR-135b expression turned to normal level after the removal of MM cells. Collectively, we provide evidence that miR-135b is involved in the impaired osteogenic differentiation of MSCs derived from MM patients and might therefore be a promising target for controlling bone disease.
    PLoS ONE 11/2013; 8(11):e79752. DOI:10.1371/journal.pone.0079752 · 3.23 Impact Factor
Show more