Article

Identification of Drugs Including a Dopamine Receptor Antagonist that Selectively Target Cancer Stem Cells

McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
Cell (Impact Factor: 33.12). 05/2012; 149(6):1284-97. DOI: 10.1016/j.cell.2012.03.049
Source: PubMed

ABSTRACT Selective targeting of cancer stem cells (CSCs) offers promise for a new generation of therapeutics. However, assays for both human CSCs and normal stem cells that are amenable to robust biological screens are limited. Using a discovery platform that reveals differences between neoplastic and normal human pluripotent stem cells (hPSC), we identify small molecules from libraries of known compounds that induce differentiation to overcome neoplastic self-renewal. Surprisingly, thioridazine, an antipsychotic drug, selectively targets the neoplastic cells, and impairs human somatic CSCs capable of in vivo leukemic disease initiation while having no effect on normal blood SCs. The drug antagonizes dopamine receptors that are expressed on CSCs and on breast cancer cells as well. These results suggest that dopamine receptors may serve as a biomarker for diverse malignancies, demonstrate the utility of using neoplastic hPSCs for identifying CSC-targeting drugs, and provide support for the use of differentiation as a therapeutic strategy.

1 Follower
 · 
405 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroendocrine differentiation (NED) marks a structural and functional feature of certain cancers, including prostate cancer (PCa), whereby the malignant tissue contains a significant proportion of cells displaying neuronal, endocrine, or mixed features. NED cells produce, and can secrete, a cocktail of mediators commonly encountered in the nervous system, which may stimulate and coordinate cancer growth. In PCa, NED appears during advanced stages, subsequent to treatment, and accompanies treatment resistance and poor prognosis. However, the term " neuroendocrine " in this context is intrinsically vague. This article seeks to provide a framework on which a unified view of NED might emerge. First, we review the mutually beneficial interplay between PCa and neural structures, mainly supported by cell biology experiments and neurological conditions. Next, we address the correlations between PCa and neural functions, as described in the literature. Based upon the integration of clinical and basic observations, we suggest that it is legitimate to seek for true neural differentiation, or neuromimicry, in cancer progression, most notably in PCa cells exhibiting what is commonly described as NED.
    Frontiers in Oncology 03/2015; 5(37). DOI:10.3389/fonc.2015.00037
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties. Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.
    BMC Cancer 01/2015; 15 Suppl 1:S1. DOI:10.1186/1471-2407-15-S1-S1 · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenothiazine derivatives are neuroleptic drugs used in the treatment of schizophrenia and anxiety. Several side effects are described for these drugs, including hepatotoxicity, which may be related to their cytotoxic activity. Working with isolated rat liver mitochondria, we previously showed that phenothiazine derivatives induced the mitochondrial permeability transition associated with cytochrome c release. Since the mitochondrial permeabilization process plays a central role in cell death, the aim of this work was to evaluate the effects of five phenothiazine derivatives (chlorpromazine, fluphenazine, thioridazine, trifluoperazine, and triflupromazine) on the viability of hepatoma tissue culture (HTC) cells to establish the structural requirements for cytotoxicity. All phenothiazine derivatives decreased the viability of the HTC cells in a concentration-dependent manner and exhibited different cytotoxic potencies. The EC50 values ranged from 45 to 125μM, with the piperidinic derivative thioridazine displaying the most cytotoxicity, followed by the piperazinic and aliphatic derivatives. The addition of the phenothiazine derivatives to cell suspensions resulted in significant morphological changes and plasma membrane permeabilization. Octanol/water partition studies revealed that these drugs partitioned preferentially to the apolar phase, even at low pH values (≤4.5). Also, structural and electronic properties were calculated employing density functional theory. Interestingly, the phenothiazine derivatives promoted an immediate dissipation of the mitochondrial transmembrane potential in HTC cells, and the EC50 values were closely correlated with those obtained in cell viability assays, as well as the EC50 for swelling in isolated mitochondria. These results significantly contribute to improving our understanding of the specific structural requirements of the phenothiazine derivatives to induce cell death and suggest the involvement of the mitochondrial permeability transition in phenothiazine-induced cytotoxicity in HTC cells. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Toxicology 02/2015; 330. DOI:10.1016/j.tox.2015.02.004 · 3.75 Impact Factor

Full-text

Download
81 Downloads
Available from
May 30, 2014