Identification of Drugs Including a Dopamine Receptor Antagonist that Selectively Target Cancer Stem Cells

McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
Cell (Impact Factor: 33.12). 05/2012; 149(6):1284-97. DOI: 10.1016/j.cell.2012.03.049
Source: PubMed

ABSTRACT Selective targeting of cancer stem cells (CSCs) offers promise for a new generation of therapeutics. However, assays for both human CSCs and normal stem cells that are amenable to robust biological screens are limited. Using a discovery platform that reveals differences between neoplastic and normal human pluripotent stem cells (hPSC), we identify small molecules from libraries of known compounds that induce differentiation to overcome neoplastic self-renewal. Surprisingly, thioridazine, an antipsychotic drug, selectively targets the neoplastic cells, and impairs human somatic CSCs capable of in vivo leukemic disease initiation while having no effect on normal blood SCs. The drug antagonizes dopamine receptors that are expressed on CSCs and on breast cancer cells as well. These results suggest that dopamine receptors may serve as a biomarker for diverse malignancies, demonstrate the utility of using neoplastic hPSCs for identifying CSC-targeting drugs, and provide support for the use of differentiation as a therapeutic strategy.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroendocrine differentiation (NED) marks a structural and functional feature of certain cancers, including prostate cancer (PCa), whereby the malignant tissue contains a significant proportion of cells displaying neuronal, endocrine, or mixed features. NED cells produce, and can secrete, a cocktail of mediators commonly encountered in the nervous system, which may stimulate and coordinate cancer growth. In PCa, NED appears during advanced stages, subsequent to treatment, and accompanies treatment resistance and poor prognosis. However, the term " neuroendocrine " in this context is intrinsically vague. This article seeks to provide a framework on which a unified view of NED might emerge. First, we review the mutually beneficial interplay between PCa and neural structures, mainly supported by cell biology experiments and neurological conditions. Next, we address the correlations between PCa and neural functions, as described in the literature. Based upon the integration of clinical and basic observations, we suggest that it is legitimate to seek for true neural differentiation, or neuromimicry, in cancer progression, most notably in PCa cells exhibiting what is commonly described as NED.
    Frontiers in Oncology 03/2015; 5(37). DOI:10.3389/fonc.2015.00037
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties. Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.
    BMC Cancer 01/2015; 15 Suppl 1:S1. DOI:10.1186/1471-2407-15-S1-S1 · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer stem cell (LCSC) is critical in cancer initiation, progression, drug resistance and relapse. Disadvantages showed in conventional lung cancer therapy probably because of its existence. In this study, lung cancer cell line A549 cells propagated as spheroid bodies (named as A549 sphere cells) in growth factors-defined serum-free medium. A549 sphere cells displayed CSC properties, including chemo-resistance, increased proportion of G0/G1 cells, slower proliferation rate, ability of differentiation and enhanced tumour formation ability in vivo. Oncolytic adenovirus ZD55 carrying EGFP gene, ZD55-EGFP, infected A549 sphere cells and inhibited cell growth. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) armed oncolytic adenovirus, ZD55-TRAIL, exhibited enhanced cytotoxicity and induced A549 sphere cells apoptosis through mitochondrial pathway. Moreover, small molecules embelin, LY294002 and resveratrol improved the cytotoxicity of ZD55-TRAIL. In the A549 sphere cells xenograft models, ZD55-TRAIL significantly inhibited tumour growth and improved survival status of mice. These results suggested that gene armed oncolytic adenovirus is a potential approach for lung cancer therapy through targeting LCSCs. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
    Journal of Cellular and Molecular Medicine 02/2015; 19(5). DOI:10.1111/jcmm.12397 · 3.70 Impact Factor