Article

Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates Akt signaling.

Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
PLoS ONE (Impact Factor: 3.53). 05/2012; 7(5):e37427. DOI: 10.1371/journal.pone.0037427
Source: PubMed

ABSTRACT O-linked N-acetylglucosamine glycosylations (O-GlcNAc) and O-linked phosphorylations (O-phosphate), as two important types of post-translational modifications, often occur on the same protein and bear a reciprocal relationship. In addition to the well documented phosphorylations that control Akt activity, Akt also undergoes O-GlcNAcylation, but the interplay between these two modifications and the biological significance remain unclear, largely due to the technique challenges. Here, we applied a two-step analytic approach composed of the O-GlcNAc immunoenrichment and subsequent O-phosphate immunodetection. Such an easy method enabled us to visualize endogenous glycosylated and phosphorylated Akt subpopulations in parallel and observed the inhibitory effect of Akt O-GlcNAcylations on its phosphorylation. Further studies utilizing mass spectrometry and mutagenesis approaches showed that O-GlcNAcylations at Thr 305 and Thr 312 inhibited Akt phosphorylation at Thr 308 via disrupting the interaction between Akt and PDK1. The impaired Akt activation in turn resulted in the compromised biological functions of Akt, as evidenced by suppressed cell proliferation and migration capabilities. Together, this study revealed an extensive crosstalk between O-GlcNAcylations and phosphorylations of Akt and demonstrated O-GlcNAcylation as a new regulatory modification for Akt signaling.

0 Bookmarks
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The liver is a vital organ responsible for maintaining nutrient homeostasis. After a meal, insulin stimulates glycogen and lipid synthesis in the liver; in the fasted state, glucagon induces gluconeogenesis and ketogenesis, which produce glucose and ketone bodies for other tissues to use as energy sources. These metabolic changes involve spatiotemporally co-ordinated signaling cascades. O-linked β-N-acetylglucosamine (O-GlcNAc) modification has been recognized as a nutrient sensor and regulatory molecular switch. This review highlights mechanistic insights into spatiotemporal regulation of liver metabolism by O-GlcNAc modification and discusses its pathophysiological implications in insulin resistance, non-alcoholic fatty liver disease, and fibrosis.
    Frontiers in Endocrinology 12/2014; 5:221.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase B (PKB) also known as Akt is involved in many signal transduction pathways. As alterations of the PKB pathway are found in a number of human malignancies, PKB is considered an important drug target for cancer therapy. However, production of sufficient amounts of active PKB for biochemical and structural studies is very costly because of the necessity of using a higher organism expression system to obtain phosphorylated PKB. Here, we report efficient production of active PKBα using the BmNPV bacmid expression system with silkworm larvae. Following direct injection of bacmid DNA, recombinant PKBα protein was highly expressed in the fat bodies of larvae, and could be purified using a GST-tag and then cleaved. A final yield of approximately 1 mg PKBα/20 larvae was recorded. Kinase assays showed that the recombinant PKBα possessed high phosphorylation activity. We further confirmed phosphorylation on the activation loop by mass spectrometric analysis. Our results indicate that the silkworm expression system is of value for preparation of active-form PKBα with phosphorylation on the activation loop. This efficient production of the active protein will facilitate further biochemical and structural studies and stimulate subsequent drug development.
    Scientific Reports 08/2014; 4:6016. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although cancer metabolism has received considerable attention over the past decade, our knowledge on its specifics is still fragmentary. Altered cellular metabolism is one of the most important hallmarks of cancer. Cancer cells exhibit aberrant glucose metabolism characterized by aerobic glycolysis, a phenomenon known as Warburg effect. Accelerated glucose uptake and glycolysis are main characteristics of cancer cells that allow them for intensive growth and proliferation. Accumulating evidence suggests that O-GlcNAc transferase (OGT), an enzyme responsible for modification of proteins with N-acetylglucosamine, may act as a nutrient sensor that links hexosamine biosynthesis pathway to oncogenic signaling and regulation of factors involved in glucose and lipid metabolism. Recent studies suggest that metabolic reprograming in cancer is connected to changes at the epigenetic level. O-GlcNAcylation seems to play an important role in the regulation of the epigenome in response to cellular metabolic status. Through histone modifications and assembly of gene transcription complexes, OGT can impact on expression of genes important for cellular metabolism. This paper reviews recent findings related to O-GlcNAc-dependent regulation of signaling pathways, transcription factors, enzymes, and epigenetic changes involved in metabolic reprograming of cancer.
    Frontiers in Endocrinology 09/2014; 5:145.