Effects of plant species traits on ecosystem processes: experiments in the Patagonian steppe

Centro de Investigaciones del Mar y la Atmósfera, Departamento de Ciencias de la Atmósfera y los Océanos, CONICET/FCEN-UBA/UMI, Pabellón II Piso 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
Ecology (Impact Factor: 5). 02/2012; 93(2):227-34. DOI: 10.2307/23143902
Source: PubMed

ABSTRACT Several experiments have shown that aboveground net primary productivity increases with plant species richness. The main mechanism proposed to explain this relationship is niche complementarity, which is determined by differences in plant traits that affect resource use. We combined field and laboratory experiments using the most abundant species of the Patagonian steppe to identify which are the traits that determine niche complementarity in this ecosystem. We estimated traits that affect carbon, water, microclimate, and nitrogen dynamics. The most important traits distinguishing among species, from the standpoint of their effects on ecosystem functioning, were potential soil nitrification, rooting depth, and soil thermal amplitude. Additionally, we explored the relationship between trait diversity and aboveground net primary production (ANPP) using a manipulative field experiment. ANPP and the fraction of ANPP accounted for by trait diversity increased with number of traits. The effect of trait diversity decreased as the number of traits increased. Here, the use of traits gave us a mechanistic understanding of niche complementarity in the Patagonian steppe.

Download full-text


Available from: Pedro Flombaum, Jan 03, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resource partitioning, facilitation, and sampling effect are the three mechanisms behind the biodiversity effect, which is depicted usually as the effect of plant-species richness on aboveground net primary production. These mechanisms operate simultaneously but their relative importance and interactions are difficult to unravel experimentally. Thus, niche differentiation and facilitation have been lumped together and separated from the sampling effect. Here, we propose three hypotheses about interactions among the three mechanisms and test them using a simulation model. The model simulated water movement through soil and vegetation, and net primary production mimicking the Patagonian steppe. Using the model, we created grass and shrub monocultures and mixtures, controlled root overlap and grass water-use efficiency (WUE) to simulate gradients of biodiversity, resource partitioning and facilitation. The presence of shrubs facilitated grass growth by increasing its WUE and in turn increased the sampling effect, whereas root overlap (resource partitioning) had, on average, no effect on sampling effect. Interestingly, resource partitioning and facilitation interacted so the effect of facilitation on sampling effect decreased as resource partitioning increased. Sampling effect was enhanced by the difference between the two functional groups in their efficiency in using resources. Morphological and physiological differences make one group outperform the other; once these differences were established further differences did not enhance the sampling effect. In addition, grass WUE and root overlap positively influence the biodiversity effect but showed no interactions.
    Oecologia 09/2013; 174(2). DOI:10.1007/s00442-013-2775-8 · 3.25 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of research on biodiversity–ecosystem functioning in laboratories has concentrated on a few traits, but there is increasing evidence from the field that functional diversity controls ecosystem functioning more often than does species number. Given the importance of traits as predictors of niche complementarity and community structures, we (1) examine how the diversity sensu lato of forest trees, freshwater fishes and soil invertebrates might support ecosystem functioning and (2) discuss the relevance of productive biota for monophyletic assemblages (taxocenes). In terrestrial ecosystems, correlating traits to abiotic factors is complicated by the appropriate choice of body-size distributions. Angiosperm and gymnosperm trees, for example, show metabolic incongruences in their respiration rates despite their pronounced macroecological scaling. Scaling heterotrophic organisms within their monophyletic assemblages seems more difficult than scaling autotrophs: in contrast to the generally observed decline of mass-specific metabolic rates with body mass within metazoans, soil organisms such as protozoans show opposite mass-specific trends. At the community level, the resource demand of metazoans shapes multitrophic interactions. Hence, population densities and their food-web relationships reflect functional diversity, but the influence of biodiversity on stability and ecosystem functioning remains less clear. We focused on fishes in 18 riverine food webs, where the ratio of primary vs. secondary extinctions (hereafter, ‘extinction partitioning’) summarizes the responses of fish communities to primary species loss (deletions) and its consequences. Based on extinction partitioning, our high-diversity food webs were just as (or even more) vulnerable to extinctions as low-diversity food webs. Our analysis allows us to assess consequences of the relocation or removal of fish species and to help with decision-making in sustainable river management. The study highlights that the topology of food webs (and not simply taxonomic diversity) plays a greater role in stabilizing the food web and enhancing ecological services than is currently acknowledged.
    Advances in Ecological Research 07/2012; 46:1-88. DOI:10.1016/B978-0-12-396992-7.00001-0 · 6.25 Impact Factor