A Scalable System for Production of Functional Pancreatic Progenitors from Human Embryonic Stem Cells

Viacyte, Inc., Athens, Georgia, United States of America.
PLoS ONE (Impact Factor: 3.53). 05/2012; 7(5):e37004. DOI: 10.1371/journal.pone.0037004
Source: PubMed

ABSTRACT Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50-100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry.

Download full-text


Available from: Mark Moorman, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human neural progenitor cells (hNPCs) are the starting material required for neuronal subtype differentiation. Proliferation of hNPCs allows researchers to study the mechanistic complexities and microenvironments present during neural differentiation and to explore potential applications for hNPCs in cell therapies. The use of enzymatic dissociation during hNPC proliferation causes dissociation-induced apoptosis; therefore, in the present study, we examined the effect of the p-160-Rho-associated coiled-coil kinase (ROCK) inhibitor Y-26732 on dissociation-induced apoptosis of hNPCs. We generated hNPCs via embryoid body formation using serum-free culture medium supplemented with noggin. The established hNPCs were characterized and the effect of the ROCK inhibitor on hNPC dissociation was studied. We demonstrated that supplementation of the culture media with 10 μM Y-26732 efficiently reduced apoptosis of dissociated hNPCs; this supplementation was effective when the inhibitor was applied either at (i) 24 h before dissociation of the cells and at 24 h after plating the cells or (ii) at 24 h after plating of the cells only. In addition to reducing apoptosis, both supplementation conditions with Y-26732 enhanced the proliferation of dissociated hNPCs. Our findings provide the optimal time window for ROCK treatment of hNPC dissociation in respect to apoptosis and cell proliferation. © 2013 S. Karger AG, Basel.
    Cells Tissues Organs 10/2013; 198(2):127-138. DOI:10.1159/000354031 · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transplantation of whole human pancreases or isolated islets into patients with type 1 diabetes mellitus has been severely hampered by the scarcity of cadaveric human donor organs, which mandates search for insulin producing cells/tissue source alternatives. Recent progress in stem cell biology has started looking into functionally competent, insulin-secreting progenitor cells. It had been previously observed that induced expression of the β-cell transcriptional factor of the pancreatic and duodenal homeobox gene1 (PDX1), in human hepatocytes, may activate multiple features of the β-cell phenotype. These "FH-B-TPN" cells were shown to release insulin in response to physiological glucose stimulation both, in vitro and in vivo. However, because FH-B-TPNs lack the expression of a number of β-cell or non β-cell genes, and are associated with low insulin content, we aimed to determine whether these cells, upon physical manipulation and envelopment within "clinical grade" alginate-based microcapsules, would reverse hyperglycemia after graft into diabetic animal models.
    Biomaterials 02/2013; DOI:10.1016/j.biomaterials.2013.02.026 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes mellitus is the leading metabolic disease and represents a major public health concern worldwide. Whereas the transplantation of pancreas donor-derived islets significantly improves the quality of life of diabetic patients who become insulin independent for few years, it can unfortunately be provided only to few patients in an advanced stage of the disease. This situation is related to the severe shortage in pancreas donors and has prompted the hunt for alternative sources of islet cells. Beside many other strategies aiming at producing new beta cells in vitro or in vivo, a particular focus has been on the plupiropent stem cells because of their abundant availability and their extreme plasticity. Progress in understanding small vertebrates embryonic development has tremendously contributed to the design of differentiation strategies applied to pluripotent stem cells. Nowadays, definitive endoderm and pancreatic progenitors can be efficiently induced from human embryonic stem cells and from human induced pluripotent stem cells. Although we are still lacking the knowledge required for deriving functional beta cells in vitro, transplantation experiments have demonstrated that stem cell-derived pancreas progenitors further generate this phenotype in vivo. All these findings gathered during the last decade witness the closer clinical application of pluripotent stem cell progenies in diabetes cell therapy.
    Medecine sciences: M/S 29(8-9):736-43. DOI:10.1051/medsci/2013298012 · 0.52 Impact Factor