Article

A Short Segment of the HIV-1 gp120 V1/V2 Region Is a Major Determinant of Resistance to V1/V2 Neutralizing Antibodies

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
Journal of Virology (Impact Factor: 4.65). 05/2012; 86(15):8319-23. DOI: 10.1128/JVI.00696-12
Source: PubMed

ABSTRACT Antibody PG9 is a prototypical member of a class of V1/V2-directed antibodies that effectively neutralizes diverse strains of HIV-1. We analyzed strain-specific resistance to PG9 using sequence and structural information. For multiply resistant strains, mutations in a short segment of V1/V2 resulted in gain of sensitivity to PG9 and related V1/V2 neutralizing antibodies, suggesting both a common mechanism of HIV-1 resistance to and a common mode of recognition by this class of antibodies.

Full-text

Available from: Dennis R Burton, May 04, 2015
1 Follower
 · 
180 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Broadly cross-reactive neutralizing antibodies (bNabs) represent powerful tools to combat human immunodeficiency virus type 1 (HIV-1) infection. Here, we examined whether HIV-1-specific bNabs are capable of cross-neutralizing distantly related simian immunodeficiency viruses (SIVs) infecting central (Pan troglodytes troglodytes) (SIVcpzPtt) and eastern (Pan troglodytes schweinfurthii) (SIVcpzPts) chimpanzees (n = 11) as well as western gorillas (Gorilla gorilla gorilla) (SIVgor) (n = 1). We found that bNabs directed against the CD4 binding site (n = 10), peptidoglycans at the base of variable loop 3 (V3) (n = 5), and epitopes at the interface of surface (gp120) and membrane-bound (gp41) envelope glycoproteins (n = 5) failed to neutralize SIVcpz and SIVgor strains. In addition, apex V2-directed bNabs (n = 3) as well as llama-derived (heavy chain only) antibodies (n = 6) recognizing both the CD4 binding site and gp41 epitopes were either completely inactive or neutralized only a fraction of SIVcpzPtt strains. In contrast, one antibody targeting the membrane-proximal external region (MPER) of gp41 (10E8), functional CD4 and CCR5 receptor mimetics (eCD4-Ig, eCD4-Ig(mim2), CD4-218.3-E51, and CD4-218.3-E51-mim2), as well as mono- and bispecific anti-human CD4 (iMab and LM52) and CCR5 (PRO140, PRO140-10E8) receptor antibodies neutralized >90% of SIVcpz and SIVgor strains with low-nanomolar (0.13 to 8.4 nM) potency. Importantly, the latter antibodies blocked virus entry not only in TZM-bl cells but also in Cf2Th cells expressing chimpanzee CD4 and CCR5 and neutralized SIVcpz in chimpanzee CD4(+) T cells, with 50% inhibitory concentrations (IC50s) ranging from 3.6 to 40.5 nM. These findings provide new insight into the protective capacity of anti-HIV-1 bNabs and identify candidates for further development to combat SIVcpz infection. SIVcpz is widespread in wild-living chimpanzees and can cause AIDS-like immunopathology and clinical disease. HIV-1 infection of humans can be controlled by antiretroviral therapy; however, treatment of wild-living African apes with current drug regimens is not feasible. Nonetheless, it may be possible to curb the spread of SIVcpz in select ape communities using vectored immunoprophylaxis and/or therapy. Here, we show that antibodies and antibody-like inhibitors developed to combat HIV-1 infection in humans are capable of neutralizing genetically diverse SIVcpz and SIVgor strains with considerable breadth and potency, including in primary chimpanzee CD4(+) T cells. These reagents provide an important first step toward translating intervention strategies currently developed to treat and prevent AIDS in humans to SIV-infected apes. Copyright © 2015 Barbian et al.
    mBio 01/2015; 6(2). DOI:10.1128/mBio.00296-15 · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Variable loops 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 perform two key functions: ensuring envelope trimer entry competence and shielding against neutralizing antibodies. While preserving entry functionality would suggest a high need for V1V2 sequence optimization and conservation, shielding efficacy is known to depend on a high flexibility of V1V2 giving rise to its substantial sequence variability. How entry competence of the trimer is maintained despite the continuous emergence of antibody escape mutations within V1V2 has not been resolved. Since HIV cell-cell transmission is considered a highly effective means of virus dissemination, we investigated whether cell-cell transmission may serve to enhance infectivity of V1V2 variants with debilitated free virus entry.ResultsIn a detailed comparison of wt and V1V2 mutant envelopes, V1V2 proved to be a key factor in ascertaining free virus infectivity, with V1V2 mutants displaying significantly reduced trimer integrity. Despite these defects, cell-cell transmission was able to partially rescue infectivity of V1V2 mutant viruses. We identified two regions, encompassing amino acids 156 to 160 (targeted by broadly neutralizing antibodies) and 175 to 180 (encompassing the ¿4ß7 binding site) which were particularly prone to free virus infectivity loss upon mutation but maintained infectivity in cell-cell transmission. Of note, V1V2 antibody shielding proved important during both free virus infection and cell-cell transmission.Conclusions Based on our data we propose a model for V1V2 evolution that centers on cell-cell transmission as a salvage pathway for virus replication. Escape from antibody neutralization may frequently result in V1V2 mutations that reduce free virus infectivity. Cell-cell transmission could provide these escape viruses with sufficiently high replication levels that enable selection of compensatory mutations, thereby restoring free virus infectivity while ensuring antibody escape. Thus, our study highlights the need to factor in cell-cell transmission when considering neutralization escape pathways of HIV-1.
    Retrovirology 09/2014; 11(1):75. DOI:10.1186/PREACCEPT-1148975491133162 · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structure of BG505 gp140 SOSIP, a soluble mimic of the native HIV-1 envelope glycoprotein (Env), marks the beginning of new era in Env structure-based immunogen design. Displaying a well-ordered quaternary structure, these subtype A-derived trimers display an excellent antigenic profile, discriminating recognition by broadly neutralizing antibodies (bNAbs) from non-broadly neutralizing antibodies (non-bNAbs), and provide a solid Env-based immunogenic platform starting point. Even with this important advance, obtaining homogeneous well-ordered soluble SOSIP trimers derived from other subtypes remains challenging. Here, we report the "rescue" of homogeneous well-ordered subtype B and C SOSIP trimers from a heterogeneous Env mixture using CD4 binding site-directed (CD4bs) non-bNAbs in a negative-selection purification process. These non-bNAbs recognize the primary receptor CD4bs only on disordered trimers but not on the native Env spike or well-ordered soluble trimers due to steric hindrance. Following negative selection to remove disordered oligomers, we demonstrated recovery of well-ordered, homogeneous trimers by electron microscopy (EM). We obtained 3D EM reconstructions of unliganded trimers, as well as in complex with sCD4, a panel of CD4bs-directed bNAbs, and the cleavage-dependent, trimer-specific bNAb, PGT151. Using bio-layer light interferometry (BLI) we demonstrated that the well-ordered trimers were efficiently recognized by bNAbs and poorly recognized by non-bNAbs, representing soluble mimics of the native viral spike. Biophysical characterization was consistent with the thermostability of a homogeneous species that could be further stabilized by specific bNAbs. This study revealed that Env trimers generate different frequencies of well-ordered versus disordered aberrant trimers even when they are genetically identical. By negatively selecting the native-like well-ordered trimers, we establish a new means to obtain soluble Env mimetics derived from subtypes B and C for expanded use as candidate vaccine immunogens.
    PLoS Pathogens 01/2015; 11(1):e1004570. DOI:10.1371/journal.ppat.1004570 · 8.06 Impact Factor