Scrib regulates HGF-mediated epithelial morphogenesis and is stabilized by Sgt1-HSP90

Journal of Cell Science (Impact Factor: 5.33). 05/2012; 125(17). DOI: 10.1242/jcs.108670
Source: PubMed

ABSTRACT Scribble was originally identified as a Drosophila protein that regulates epithelial polarity and formation of the basolateral surface. The mammalian orthologue, Scrib, is evolutionarily conserved, but does not appear to be necessary for apical-basolateral epithelial polarity. Instead, it is implicated in the regulation of cell survival, protein trafficking, adhesion and migration. A key issue is to understand the molecular pathway by which Scrib participates in these processes. Here, we investigate Scrib using a 3D epithelial cell culture system. We show a novel association between the LRR domain of Scrib and the co-chaperone Sgt1 and demonstrate that these proteins are necessary for epithelial morphogenesis and tubulogenesis following HGF stimulation. The molecular chaperone HSP90 is also required for Sgt1 association with Scrib, and both Sgt1 and HSP90 are needed to ensure proper Scrib protein levels. Furthermore, reduced Scrib stability, following inhibition of Sgt1-HSP90, lowers the cellular abundance of the Scrib-βPix-PAK complex. Inhibition of any member of this complex, Scrib, βPix or PAK, is sufficient to block HGF-mediated epithelial morphogenesis. The identification of Scrib as an Sgt1-HSP90 client protein required for 3D cell migration suggests that chaperone-mediated regulation of polarity protein stability and homeostasis is an unappreciated mechanism underlying dynamic rearrangements during morphogenesis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Building the complex architecture of tubular organs is a highly dynamic process that involves cell migration, polarization, shape changes, adhesion to neighboring cells and the extracellular matrix, physicochemical characteristics of the extracellular matrix and reciprocal signaling with the mesenchyme. Understanding these processes in vivo has been challenging as they take place over extended time periods deep within the developing organism. Here, I will discuss 3D in vitro models that have been crucial to understand many of the molecular and cellular mechanisms and key concepts underlying branching morphogenesis in vivo.
    Seminars in Cell and Developmental Biology 07/2014; 31. DOI:10.1016/j.semcdb.2014.02.016 · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity. For further reading, please see related articles: 'ERM proteins at a glance' by Andrea McClatchey (J. Cell Sci. 127: , [098343]). 'Integrins and epithelial cell polarity' by Jessica Lee and Charles Streuli (J. Cell Sci. 127: , [146142]).
    Journal of Cell Science 07/2014; 127(15). DOI:10.1242/jcs.153197 · 5.33 Impact Factor


Available from