Article

Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action.

Department of Biotechnology, University of Kashmir, Science Block, Hazratbal Campus, Srinagar, Kashmir 190006, India.
Cell and Tissue Research (Impact Factor: 3.33). 05/2012; 349(2):405-13. DOI: 10.1007/s00441-012-1438-0
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression in animals and in plants. In recent years, miRNAs have been shown to be important biological molecules for regulating various cellular functions. miRNAs function post-transcriptionally usually by base-pairing to the mRNA 3'-untranslated regions of the mRNAs and repress protein synthesis by mechanisms that are not fully understood. Various miRNA genes have been mapped in the genome of a number of organisms and the list continues to grow. Details regarding the genomic organisation, transcriptional regulation and post-transcriptional maturation of miRNAs are still emerging. In this review, information regarding the genomic organisation, biogenesis and regulation of expression of miRNAs is discussed.

2 Followers
 · 
164 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Along with the canonical miRNA, distinct miRNA-like sequences called sibling miRNAs (sib-miRs) are generated from the same pre-miRNA. Among them, isomeric sequences featuring slight variations at the terminals, relative to the canonical miRNA, constitute a pool of isomeric sibling miRNAs (isomiRs). Despite the high prevalence of isomiRs in eukaryotes, their features and relevance remain elusive. In this study, we performed a comprehensive analysis of mature precursor miRNA (pre-miRNA) sequences from Arabidopsis to understand their features and regulatory targets. The influence of isomiR terminal heterogeneity in target binding was examined comprehensively. Our comprehensive analyses suggested a novel computational strategy that utilizes miRNA and its isomiRs to enhance the accuracy of their regulatory target prediction in Arabidopsis. A few targets are shared by several members of isomiRs; however, this phenomenon was not typical. Gene Ontology (GO) enrichment analysis showed that commonly targeted mRNAs were enriched for certain GO terms. Moreover, comparison of these commonly targeted genes with validated targets from published data demonstrated that the validated targets are bound by most isomiRs and not only the canonical miRNA. Furthermore, the biological role of isomiRs in target cleavage was supported by degradome data. Incorporating this finding, we predicted potential target genes of several miRNAs and confirmed them by experimental assays. This study proposes a novel strategy to improve the accuracy of predicting miRNA targets through combined use of miRNA with its isomiRs.
    RNA Biology 01/2015; DOI:10.1080/15476286.2014.996474 · 5.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are one class of small, endogenous, non-coding RNAs that are approximately 22 nucleotides in length; they are very numerous, have been phylogenetically conserved, and involved in biological processes such as development, differentiation, cell proliferation, and apoptosis. MicroRNAs contribute to modulating the expression levels of specific proteins based on sequence complementarity with their target mRNA molecules and so they play a key role in both health and disease. Angiogenesis is the process of new blood vessel formation from preexisting ones, which is particularly relevant to cancer and its progression. Over the last few years, microRNAs have emerged as critical regulators of signalling pathways in multiple cell types including endothelial and perivascular cells. This review summarises the role of miRNAs in tumour angiogenesis and their potential implications as therapeutic targets in cancer.
    BioMed Research International 08/2014; 2014:878450. DOI:10.1155/2014/878450 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) is a multi-faceted condition including simple steatosis alone or associated with inflammation and ballooning (non-alcoholic steatohepatitis) and eventually fibrosis. The NAFLD incidence has increased over the last twenty years becoming the most frequent chronic liver disease in industrialized countries. Obesity, visceral adiposity, insulin resistance, and many other disorders that characterize metabolic syndrome are the major predisposing risk factors for NAFLD. Furthermore, different factors, including genetic background, epigenetic mechanisms and environmental factors, such as diet and physical exercise, contribute to NAFLD development and progression. Several lines of evidence demonstrate that specific microRNAs expression profiles are strongly associated with several pathological conditions including NAFLD. In NAFLD, microRNA deregulation in response to intrinsic genetic or epigenetic factors or environmental factors contributes to metabolic dysfunction. In this review we focused on microRNAs role both as controlled and controllers molecules in NAFLD development and/or their eventual value as non-invasive biomarkers of disease.