Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action.

Department of Biotechnology, University of Kashmir, Science Block, Hazratbal Campus, Srinagar, Kashmir 190006, India.
Cell and Tissue Research (Impact Factor: 3.33). 05/2012; 349(2):405-13. DOI: 10.1007/s00441-012-1438-0
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression in animals and in plants. In recent years, miRNAs have been shown to be important biological molecules for regulating various cellular functions. miRNAs function post-transcriptionally usually by base-pairing to the mRNA 3'-untranslated regions of the mRNAs and repress protein synthesis by mechanisms that are not fully understood. Various miRNA genes have been mapped in the genome of a number of organisms and the list continues to grow. Details regarding the genomic organisation, transcriptional regulation and post-transcriptional maturation of miRNAs are still emerging. In this review, information regarding the genomic organisation, biogenesis and regulation of expression of miRNAs is discussed.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are one class of small, endogenous, non-coding RNAs that are approximately 22 nucleotides in length; they are very numerous, have been phylogenetically conserved, and involved in biological processes such as development, differentiation, cell proliferation, and apoptosis. MicroRNAs contribute to modulating the expression levels of specific proteins based on sequence complementarity with their target mRNA molecules and so they play a key role in both health and disease. Angiogenesis is the process of new blood vessel formation from preexisting ones, which is particularly relevant to cancer and its progression. Over the last few years, microRNAs have emerged as critical regulators of signalling pathways in multiple cell types including endothelial and perivascular cells. This review summarises the role of miRNAs in tumour angiogenesis and their potential implications as therapeutic targets in cancer.
    BioMed Research International 01/2014; 2014:878450. · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) is a multi-faceted condition including simple steatosis alone or associated with inflammation and ballooning (non-alcoholic steatohepatitis) and eventually fibrosis. The NAFLD incidence has increased over the last twenty years becoming the most frequent chronic liver disease in industrialized countries. Obesity, visceral adiposity, insulin resistance, and many other disorders that characterize metabolic syndrome are the major predisposing risk factors for NAFLD. Furthermore, different factors, including genetic background, epigenetic mechanisms and environmental factors, such as diet and physical exercise, contribute to NAFLD development and progression. Several lines of evidence demonstrate that specific microRNAs expression profiles are strongly associated with several pathological conditions including NAFLD. In NAFLD, microRNA deregulation in response to intrinsic genetic or epigenetic factors or environmental factors contributes to metabolic dysfunction. In this review we focused on microRNAs role both as controlled and controllers molecules in NAFLD development and/or their eventual value as non-invasive biomarkers of disease.
    World journal of gastroenterology : WJG. 11/2014; 20(41):15079-15086.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously demonstrated that a stable synthetic analog of 20-hydroxyeicosatetraenoic acid (20-HETE), N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), which mimics the effects of endogenously produced 20-HETE, prevents vascular hyporeactivity, hypotension, tachycardia, inflammation, and mortality in a rodent model of septic shock. The present study was performed to determine whether decreased renal and cardiovascular expression and activity of myeloid differentiation factor 88 (MyD88)/transforming growth factor-activated kinase 1 (TAK1)/inhibitor of κB (IκB) kinase β (IKKβ)/IκB-α/nuclear factor-κB (NF-κB) pathway and reduced circulating microRNA (miR)-150, miR-223, and miR-297 expression levels participate in the protective effect of 5,14-HEDGE against hypotension, tachycardia, and inflammation in response to systemic administration of lipopolysaccharide (LPS).
    Inflammation Research 06/2014; · 2.14 Impact Factor