Article

Gene expression in skin, muscle, and dorsal root ganglion after plantar incision in the rat.

Department of Anesthesia, University of Iowa, Iowa City, Iowa 52242, USA.
Anesthesiology (Impact Factor: 5.16). 05/2012; 117(1):161-72. DOI: 10.1097/ALN.0b013e31825a2a2b
Source: PubMed

ABSTRACT Treating postoperative pain remains a significant challenge for perioperative medicine. Recent studies have shown that nerve growth factor is up-regulated and contributes to incisional pain. To date, few studies have examined expression of other neurotrophin-related mediators that may contribute to the development and/or maintenance of incisional pain.
Male Sprague-Dawley rats underwent a plantar incision, and pain behaviors were examined (n = 6). In a separate group of rats, expression of neurotrophic factors were studied. At various times after incision (n = 4) or sham surgery (n = 4), the skin, muscle, and dorsal root ganglia were harvested and total RNA isolated. Real-time reverse transcription polymerase chain reaction was performed and the fold change in gene expression was analyzed using significance analysis of microarrays.
Several genes were changed (P < 0.05) as early as 1 h after incision. Expression of artemin and nerve growth factor were increased in both incised skin and muscle. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-5 were all down-regulated in the skin but up-regulated in the muscle 48 h after incision. Few genes changed in the dorsal root ganglion. Most changes in expression occurred in the first 48 h after incision, a timeframe when pain behavior was the greatest.
Surgical incision is associated with pain-related gene expression changes in skin, muscle, and, to a lesser extent, dorsal root ganglion. The gene expression profile provides clues as to mediators that are involved in peripheral sensitization and pain transmission after surgical incision and also suggest mechanisms for resolution of postoperative pain when more persistent pain syndromes like neuropathic pain continue.

0 Bookmarks
 · 
101 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous work has demonstrated that neuropeptide tyrosine (NPY), Y(1) receptor and Y(2) receptor are critical in modulation of pain after nerve injury. We hypothesized that NPY was important for nociception after surgical incision. As a model of postoperative pain, rats underwent a plantar incision in one hindpaw. Western blots were used to quantify changes in protein expression of NPY, Y(1) receptor and Y(2) receptor after incision in skin, muscle, and dorsal root ganglion (DRG). Pain-related behaviors were tested after incision in rats treated with intrathecal NPY, Y(1) receptor antagonist (BIBO3304 - Chemical Name: N-[(1R)-1-[[[[4-[[(Aminocarbonyl)amino]methyl]phenyl]methyl]amino]carbonyl]-4-[(aminoiminomethyl)amino]butyl]-α-phenyl-benzeneacetamide ditrifluoroacetate), Y(2) receptor antagonist (BIIE0246 - Chemical Name: N-[(1S)-4-[(Aminoiminomethyl)amino]-1-[[[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]amino]carbonyl]butyl]-1-[2-[4-(6,11-dihydro-6-oxo-5H-dibenz[b,e]azepin-11-yl)-1-piperazinyl]-2-oxoethyl]-cyclopentaneacetamide), combined NPY+antagonists, morphine, or vehicle. Pain behaviors were tested after incision in rats treated with locally applied intraplantar injections of NPY, Y(1) receptor and Y(2) receptor antagonists or vehicle. NPY protein expression was significantly downregulated in muscle for two days after incision. In contrast, Y(1) receptor and Y(2) receptor protein expression was upregulated in both skin and muscle. A single intrathecal injection of NPY reduced cumulative guarding pain scores, as did morphine. The intrathecal administration of Y(2) receptor antagonist also reduced pain scores; findings that were not observed when drugs were administered locally. Intrathecal Y(2) receptor antagonists and NPY improved mechanical threshold and heat withdrawal latency 2h after incision. Intrathecal administration of NPY and/or central blockade of Y(2) receptor attenuated pain behaviors early after incision (postoperative day (POD) 1-2). Y(1) receptor antagonist administration blocked the anti-hyperalgesic effect of NPY. Together these data suggest a role for spinal NPY in postoperative pain.
    European journal of pharmacology 11/2012; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system -- specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process. In the rat SNI model, we validated and ranked Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 and 18S as good reference genes in the spinal cord. In the DRG, 18S did not fulfill stability criteria. The combination of any two stable reference genes was sufficient to provide an accurate normalization.
    BMC Research Notes 07/2013; 6(1):266.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic pain associated with injury or disease can result from dysfunction of sensory afferents whereby the threshold for activation of pain-sensing neurons (nociceptors) is lowered. Neurotrophic factors control nociceptor development and survival, but also induce sensitization through activation of their cognate receptors, attributable, in part, to the modulation of ion channel function. Thermal pain is mediated by channels of the transient receptor potential (TRP) family, including the cold and menthol receptor TRPM8. Although it has been shown that TRPM8 is involved in cold hypersensitivity, the molecular mechanisms underlying this pain modality are unknown. Using microarray analyses to identify mouse genes enriched in TRPM8 neurons, we found that the glial cell line-derived neurotrophic factor (GDNF) family receptor GFRα3 is expressed in a subpopulation of TRPM8 sensory neurons that have the neurochemical profile of cold nociceptors. Moreover, we found that artemin, the specific GFRα3 ligand that evokes heat hyperalgesia, robustly sensitized cold responses in a TRPM8-dependent manner in mice. In contrast, GFRα1 and GFRα2 are not coexpressed with TRPM8 and their respective ligands GDNF and neurturin did not induce cold pain, whereas they did evoke heat hyperalgesia. Nerve growth factor induced mild cold sensitization, consistent with TrkA expression in TRPM8 neurons. However, bradykinin failed to alter cold sensitivity even though its receptor expresses in a subset of TRPM8 neurons. These results show for the first time that only select neurotrophic factors induce cold sensitization through TRPM8 in vivo, unlike the broad range of proalgesic agents capable of promoting heat hyperalgesia.
    Journal of Neuroscience 07/2013; 33(30):12543-52. · 6.91 Impact Factor