Article

Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae

Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France.
Bioresource Technology (Impact Factor: 5.04). 04/2012; 117:242-50. DOI: 10.1016/j.biortech.2012.04.013
Source: PubMed

ABSTRACT The impact of the temperature on an industrial yeast strain was investigated in very high ethanol performance fermentation fed-batch process within the range of 30-47 °C. As previously observed with a lab strain, decoupling between growth and glycerol formation occurred at temperature of 36 °C and higher. A dynamic model was proposed to describe the impact of the temperature on the total and viable biomass, ethanol and glycerol production. The model validation was implemented with experimental data sets from independent cultures under different temperatures, temperature variation profiles and cultivation modes. The proposed model fitted accurately the dynamic evolutions for products and biomass concentrations over a wide range of temperature profiles. R2 values were above 0.96 for ethanol and glycerol in most experiments. The best results were obtained at 37 °C in fed-batch and chemostat cultures. This dynamic model could be further used for optimizing and monitoring the ethanol fermentation at larger scale.

2 Followers
 · 
128 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A gas lift-system with inserts (so-called Blenke cascade system) for continuous bio-ethanol fermentation was constructed. Gas introduced at the bottom of the column created toroidal vortices in the fluid cells between inserts, enhancing mixing and improving residence time behavior without stirring equipment being necessary. The parameters mash type, start-up strategy, yeast-recycle model and yeast separation were studied concerning the efficiency of the ethanol production. The best results obtained were for a filtered mash, a double saccharification principle (DSP), a batch start-up strategy, an activation-recycle model and a lamella settler connected in series with a small conventional gravitational settler for yeast cells separation. Using this system, the fermentation residence time was τ=4-5.5h, depending on substrate type. Eighty five percent of the yeast cells could be separated. High volumetric ethanol productivity (Q(p)=20.43g/Lh) and yield E(y)=98% were achieved. Continuous fermentation, yeast recycling and sedimentation were contamination-free processes.
    Bioresource Technology 07/2012; 123:221-9. DOI:10.1016/j.biortech.2012.07.032 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study it was proposed the application of a fuzzy-PI controller in tandem with a split range control strategy to regulate the temperature inside a fermentation vat. Simulations were carried out using different configurations of fuzzy controllers and split range combinations for regulatory control. The performance of these control systems were compared using conventional integral of error criteria, the demand of utilities and the control effort. The proposed control system proved able to adequately regulate the temperature in all the tests. Besides, considering a similar ITAE index and using the energetically most efficient split range configuration, fuzzy-PI controller provided a reduction of approximately 84.5% in the control effort and of 6.75% in total demand of utilities by comparison to a conventional PI controller.
    Bioresource Technology 05/2013; 142C:475-482. DOI:10.1016/j.biortech.2013.05.083 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains.
    Bioresource Technology 11/2013; 152C:371-376. DOI:10.1016/j.biortech.2013.11.033 · 5.04 Impact Factor