Article

Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation

Sialix, Inc. 1396 Poinsettia Ave. Vista, CA 92081-8504, USA.
Biotechnology & genetic engineering reviews (Impact Factor: 1.9). 01/2012; 28(1):147-75. DOI: 10.5661/bger-28-147
Source: PubMed

ABSTRACT One of the fastest growing fields in the pharmaceutical industry is the market for therapeutic glycoproteins. Today, these molecules play a major role in the treatment of various diseases, and include several protein classes, i.e., clotting factors, hormones, cytokines, antisera, enzymes, enzyme inhibitors, Ig-Fc-Fusion proteins, and monoclonal antibodies. Optimal glycosylation is critical for therapeutic glycoproteins, as glycans can influence their yield, immunogenicity and efficacy, which impact the costs and success of such treatments. While several mammalian cell expression systems currently used can produce therapeutic glycoproteins that are mostly decorated with human-like glycans, they can differ from human glycans by presenting two structures at the terminal and therefore most exposed position. First, natural human N-glycans are lacking the terminal Gal 1-3Gal (alpha-Gal) modification; and second, they do not contain the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc). All humans spontaneously express antibodies against both of these glycan structures, risking increased immunogenicity of biotherapeutics carrying such non-human glycan epitopes. However, in striking contrast to the alpha-Gal epitope, exogenous Neu5Gc can be metabolically incorporated into human cells and presented on expressed glycoproteins in several possible epitopes. Recent work has demonstrated that this non-human sialic acid is found in widely varying amounts on biotherapeutic glycoproteins approved for treatment of various medical conditions. Neu5Gc on glycans of these medical agents likely originates from the production process involving the non-human mammalian cell lines and/or the addition of animal-derived tissue culture supplements. Further studies are needed to fully understand the impact of Neu5Gc in biotherapeutic agents. Similar concerns apply to human cells prepared for allo- or auto-transplantation, that have been grown in animal-derived tissue culture supplements.

2 Followers
 · 
315 Views
  • Source
    • "The vast majority of secreted proteins with potential therapeutic applications belong to the class of antibodies and cytokines (Ghaderi et al., 2012). Therefore, we tested whether SINEUP technology could be used to increase extracellular levels of these two classes of recombinant proteins. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Whenever the function of a recombinant protein depends on post-translational processing, mammalian cells become an indispensable tool for their production. This is particularly true for biologics and therapeutic monoclonal antibodies (MAbs). Despite some drawbacks, Chinese Hamster Ovary (CHO) cells are the workhorse for MAbs production in academia and industry. Several methodologies have been adopted to improve expression and stability, including methods based on selective pressure or cell engineering. We have previously identified SINEUPs as a new functional class of natural and synthetic long non-coding RNAs that through the activity of an inverted SINEB2 element are able to promote translation of partially overlapping sense coding mRNAs. Here we show that by taking advantage of their modular structure, synthetic SINEUPs can be designed to increase production of secreted proteins. Furthermore, by experimentally validating antisense to elastin (AS-eln) RNA as a natural SINEUP, we show that SINEUP-mediated control may target extracellular proteins. These results lead us to propose synthetic SINEUPs as new versatile tools to optimize production of secreted proteins in manufacturing pipelines and natural SINEUPs as new regulatory RNAs in the secretory pathways. Copyright © 2015. Published by Elsevier B.V.
    Gene 06/2015; DOI:10.1016/j.gene.2015.05.070 · 2.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Membranes constitute the interface between the basic unit of life-a single cell-and the outside environment and thus in many ways comprise the ultimate "functional biomaterial". To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies-as they rapidly mature-hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.
    6(2):454-485. DOI:10.3390/jfb6020454
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: No abstract
Show more

Preview

Download
11 Downloads
Available from