Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation.

Sialix, Inc. 1396 Poinsettia Ave. Vista, CA 92081-8504, USA.
Biotechnology & genetic engineering reviews (Impact Factor: 1.9). 01/2012; 28:147-75. DOI: 10.5661/bger-28-147
Source: PubMed

ABSTRACT One of the fastest growing fields in the pharmaceutical industry is the market for therapeutic glycoproteins. Today, these molecules play a major role in the treatment of various diseases, and include several protein classes, i.e., clotting factors, hormones, cytokines, antisera, enzymes, enzyme inhibitors, Ig-Fc-Fusion proteins, and monoclonal antibodies. Optimal glycosylation is critical for therapeutic glycoproteins, as glycans can influence their yield, immunogenicity and efficacy, which impact the costs and success of such treatments. While several mammalian cell expression systems currently used can produce therapeutic glycoproteins that are mostly decorated with human-like glycans, they can differ from human glycans by presenting two structures at the terminal and therefore most exposed position. First, natural human N-glycans are lacking the terminal Gal 1-3Gal (alpha-Gal) modification; and second, they do not contain the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc). All humans spontaneously express antibodies against both of these glycan structures, risking increased immunogenicity of biotherapeutics carrying such non-human glycan epitopes. However, in striking contrast to the alpha-Gal epitope, exogenous Neu5Gc can be metabolically incorporated into human cells and presented on expressed glycoproteins in several possible epitopes. Recent work has demonstrated that this non-human sialic acid is found in widely varying amounts on biotherapeutic glycoproteins approved for treatment of various medical conditions. Neu5Gc on glycans of these medical agents likely originates from the production process involving the non-human mammalian cell lines and/or the addition of animal-derived tissue culture supplements. Further studies are needed to fully understand the impact of Neu5Gc in biotherapeutic agents. Similar concerns apply to human cells prepared for allo- or auto-transplantation, that have been grown in animal-derived tissue culture supplements.

1 Bookmark
  • Plant Biotechnology Reports 09/2014; 8(5):357-376. · 1.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Engineered Fc-lacking bispecific antibodies have shown an exceptionally high potency for recruiting lymphocyte effector cells and enhancing antitumor activity, which is under evaluation in several clinical trials. However, current treatment regimens raise some issues that should be considered, such as the high cost of clinical-grade bispecific antibodies and the achievement of sustained therapeutic plasma levels. The use of gene transfer methods may circumvent problems related to large-scale production and purification, and result in sustained therapeutic plasma concentrations of the Fc-lacking bispecific antibodies. In fact, terminally differentiated cells and non-terminally differentiated cells can be genetically modified to secrete functionally active bispecific antibodies exerting clear anti-tumor effects. This review highlights the relevance of different promising strategies for in vivo delivery of therapeutic bispecific antibodies.
    Antibodies. 09/2013; 2:415-425.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Engineered antibodies are key players in therapy, diagnostics and research. In addition to full size immunoglobulin gamma (IgG) molecules, smaller formats of recombinant antibodies, such as single-chain variable fragments (scFv) and antigen binding fragments (Fab), have emerged as promising alternatives since they possess different advantageous properties. Cell-based production technologies of antibodies and antibody fragments are well-established, allowing researchers to design and manufacture highly specific molecular recognition tools. However, as these technologies are accompanied by the drawbacks of being rather time-consuming and cost-intensive, efficient and powerful cell-free protein synthesis systems have been developed over the last decade as alternatives. So far, prokaryotic cell-free systems have been the focus of interest. Recently, eukaryotic in vitro translation systems have enriched the antibody production pipeline, as these systems are able to mimic the natural pathway of antibody synthesis in eukaryotic cells. This review aims to overview and summarize the advances made in the production of antibodies and antibody fragments in cell-free systems.
    Antibodies. 01/2015; 4:12-33.


Available from