REV-ERB-erating nuclear receptor functions in circadian metabolism and physiology

Department of Biology, Unit of Biochemistry, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland.
Cell Research (Impact Factor: 12.41). 05/2012; 22(9):1319-21. DOI: 10.1038/cr.2012.81
Source: PubMed


A hallmark of the mammalian circadian timing system is synchronization of physiology and behavior, but when this synchronization is disturbed, chronic diseases such as metabolic syndrome and depression may develop. Three new studies show that nuclear receptors of the Rev-Erb family impact the circadian oscillator and its metabolic output and this can be modified with specific agonists. Hence, resynchronization of metabolic pathways by manipulation of the circadian oscillator using REV-ERB-specific agonists may represent a feasible therapeutic concept to target diseases rooted in a misaligned circadian system.

Download full-text


Available from: Urs Albrecht,
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.
    Journal of Biological Rhythms 08/2013; 28(4):262-71. DOI:10.1177/0748730413493862 · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Circadian rhythm has been the object of much attention. This review addresses the aspects of cell signaling, receptors, therapy and electrical effects in a multifaceted fashion. The pineal gland, which produces the important hormones melatonin and serotonin, exerts a prominent influence, in addition to the supraschiasmatic nucleus. Many aspects involve free radicals which have played a widespread role in biochemistry.
    Journal of Receptor and Signal Transduction Research 08/2013; 33(5). DOI:10.3109/10799893.2013.822890 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer is the most prevalent among digestive system cancers. Carcinogenesis relies on disrupted control of cellular processes, such as metabolism, proliferation, DNA damage recognition and repair, and apoptosis. Cell, tissue, organ and body physiology is characterized by periodic fluctuations driven by biological clocks operating through the clock gene machinery. Dysfunction of molecular clockworks and cellular oscillators is involved in tumorigenesis, and altered expression of clock genes has been found in cancer patients. Epidemiological studies have shown that circadian disruption, that is, alteration of bodily temporal organization, is a cancer risk factor, and an increased incidence of colorectal neoplastic disease is reported in shift workers. In this review we describe the involvement of the circadian clock circuitry in colorectal carcinogenesis and the therapeutic strategies addressing temporal deregulation in colorectal cancer.
    World Journal of Gastroenterology 04/2014; 20(15):4197-4207. DOI:10.3748/wjg.v20.i15.4197 · 2.37 Impact Factor
Show more