Article

N-glycosylation promotes the cell surface expression of Kv1.3 potassium channels.

Department of Biological Sciences and Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY, USA.
FEBS Journal (Impact Factor: 4.25). 05/2012; 279(15):2632-44. DOI: 10.1111/j.1742-4658.2012.08642.x
Source: PubMed

ABSTRACT The voltage-gated potassium channel Kv1.3 plays an essential role in modulating membrane excitability in many cell types. Kv1.3 is a heavily glycosylated membrane protein. Two successive N-glycosylation consensus sites, N228NS and N229ST, are present on the S1-S2 linker of rat Kv1.3. Our data suggest that Kv1.3 contains only one N-glycan and it is predominantly attached to N229 in the S1-S2 extracellular linker. Preventing N-glycosylation of Kv1.3 significantly decreased its surface protein level and surface conductance density level, which were ∼ 49% and ∼ 46% respectively of the level of wild type. Supplementation of N-acetylglucosamine (GlcNAc), l-fucose or N-acetylneuraminic acid to the culture medium promoted Kv1.3 surface protein expression, whereas supplementation of d-glucose, d-mannose or d-galactose did not. Among the three effective monosaccharides/derivatives, adding GlcNAc appeared to reduce sialic acid content and increase the degree of branching in the N-glycan of Kv1.3, suggesting that the N-glycan structure and composition had changed. Furthermore, the cell surface half-life of the Kv1.3 surface protein was increased upon GlcNAc supplementation, indicating that it had decreased internalization. The GlcNAc effect appears to apply mainly to membrane proteins containing complex type N-glycans. Thus, N-glycosylation promotes Kv1.3 cell surface expression; supplementation of GlcNAc increased Kv1.3 surface protein level and decreased its internalization, presumably by a combined effect of decreased branch size and increased branching of the N-glycan.

0 Bookmarks
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mice with null mutations in specific Golgi glycosyltransferases show evidence of glycan compensation where missing carbohydrate epitopes are found on biosynthetically related structures. Repetitive saccharide sequences within the larger glycan structures are functional epitopes recognized by animal lectin. These studies provide the first in vivo support for the existence of a feedback system that maintains and regulates glycan epitope density in cells. Receptor regulation by lectin-glycan interactions and the Golgi provides a mechanism for adaptation of cell surface receptors and solute transporters in response to environmental cues and intracellular signaling. We suggest that other posttranslational modification systems may have similar conditional features regulated by density dependent ligand-epitope interactions.
    Molecular &amp Cellular Proteomics 02/2013; · 7.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is an epidemic, calling for innovative and reliable pharmacological strategies. Here, we show that ShK-186, a selective and potent blocker of the voltage-gated Kv1.3 channel, counteracts the negative effects of increased caloric intake in mice fed a diet rich in fat and fructose. ShK-186 reduced weight gain, adiposity, and fatty liver; decreased blood levels of cholesterol, sugar, HbA1c, insulin, and leptin; and enhanced peripheral insulin sensitivity. These changes mimic the effects of Kv1.3 gene deletion. ShK-186 did not alter weight gain in mice on a chow diet, suggesting that the obesity-inducing diet enhances sensitivity to Kv1.3 blockade. Several mechanisms may contribute to the therapeutic benefits of ShK-186. ShK-186 therapy activated brown adipose tissue as evidenced by a doubling of glucose uptake, and increased β-oxidation of fatty acids, glycolysis, fatty acid synthesis, and uncoupling protein 1 expression. Activation of brown adipose tissue manifested as augmented oxygen consumption and energy expenditure, with no change in caloric intake, locomotor activity, or thyroid hormone levels. The obesity diet induced Kv1.3 expression in the liver, and ShK-186 caused profound alterations in energy and lipid metabolism in the liver. This action on the liver may underlie the differential effectiveness of ShK-186 in mice fed a chow vs. an obesity diet. Our results highlight the potential use of Kv1.3 blockers for the treatment of obesity and insulin resistance.
    Proceedings of the National Academy of Sciences 05/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer progression is accompanied by increases in glucose and glutamine metabolism, providing the carbon and nitrogen required in downstream anabolic pathways. Fructose-6P, glutamine, and acetyl-CoA are central metabolites and substrates of the hexosamine biosynthesis pathway (HBP) to UDP-N-acetylglucosamine (UDP-GlcNAc), an essential high-energy donor for protein glycosylation. Golgi and cytosolic glycosylation pathways are sensitive to UDP-GlcNAc levels, which in turn regulates metabolic homeostasis in a poorly understood manner. To study the hexosamine biosynthesis pathway in cancer cells, we developed a targeted approach for cellular metabolomics profiling by liquid chromatography–tandem mass spectrometry. Human cervical (HeLa) and prostate cancer (PC-3) cell lines were cultured in medium with increasing concentrations of glucose, glutamine, or GlcNAc to perturb the metabolic network. Principal component analysis indicated trends that were further analyzed as individual metabolites and pathways. HeLa cell metabolism was predominantly glycolytic, while PC-3 cells showed a greater dependency on extracellular glutamine. In both cell lines, UDP-GlcNAc levels declined with glucose but not glutamine starvation, whereas glutamine abundance increased UDP-GlcNAc levels 2–3-fold. GlcNAc supplementation increased UDP-GlcNAc 4–8-fold in both HeLa and PC-3 cells. GlcNAc supplementation in HeLa cells induced nonmonotonic changes in NADH/NAD+, NADPH/NADP+, reactive oxygen species, and reduced/oxidized glutathione. In PC-3 cells, GlcNAc supplementation also increased glucose and glutamine uptake and catabolism. Our results suggest that stimulation of the HBP in cancer cells regulates metabolism and redox potential, which might be exploited to target cancer cells.
    ACS Chemical Biology 07/2013; · 5.44 Impact Factor

Full-text

View
0 Downloads