Article

Small molecule drug discovery at the glucagon-like peptide-1 receptor.

Translational Science and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
Experimental Diabetes Research (Impact Factor: 1.89). 01/2012; 2012:709893. DOI:10.1155/2012/709893
Source: PubMed

ABSTRACT The therapeutic success of peptide glucagon-like peptide-1 (GLP-1) receptor agonists for the treatment of type 2 diabetes mellitus has inspired discovery efforts aimed at developing orally available small molecule GLP-1 receptor agonists. Although the GLP-1 receptor is a member of the structurally complex class B1 family of GPCRs, in recent years, a diverse array of orthosteric and allosteric nonpeptide ligands has been reported. These compounds include antagonists, agonists, and positive allosteric modulators with intrinsic efficacy. In this paper, a comprehensive review of currently disclosed small molecule GLP-1 receptor ligands is presented. In addition, examples of "ligand bias" and "probe dependency" for the GLP-1 receptor are discussed; these emerging concepts may influence further optimization of known molecules or persuade designs of expanded screening strategies to identify novel chemical starting points for GLP-1 receptor drug discovery.

0 0
 · 
1 Bookmark
 · 
151 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Identifying novel mechanisms to enhance glucagon-like peptide-1 (GLP-1) receptor signaling may enable nascent medicinal chemistry strategies aimed at developing new orally available therapeutic agents for the treatment of type 2 diabetes mellitus. Therefore, we tested the hypothesis that selectively modulating the low affinity GLP-1 receptor agonist, oxyntomodulin, would improve the insulin secretory properties of this naturally occurring hormone to provide a rationale for pursuing an unexplored therapeutic approach. Signal transduction and competition binding studies were used to investigate oxyntomodulin activity on the GLP-1 receptor in the presence of the small molecule GLP-1 receptor modulator, 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP). In vivo, the intravenous glucose tolerance test characterized oxyntomodulin-induced insulin secretion in animals administered the small molecule. BETP increased oxyntomodulin binding affinity for the GLP-1 receptor and enhanced oxyntomodulin-mediated GLP-1 receptor signaling as measured by activation of the α subunit of heterotrimeric G protein and cAMP accumulation. In addition, oxyntomodulin-induced insulin secretion was enhanced in the presence of the compound. BETP was pharmacologically characterized to induce biased signaling by oxyntomodulin. These studies demonstrate that small molecules targeting the GLP-1 receptor can increase binding and receptor activation of the endogenous peptide oxyntomodulin. The biased signaling engendered by BETP suggests GLP-1 receptor mobilization of cAMP is the critical insulinotropic signaling event. Due to unique metabolic properties of oxyntomodulin, identifying molecules that enhance its activity should be pursued in order to assess the efficacy and safety of this novel mechanism.
    Molecular pharmacology 08/2012; · 4.53 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Glucagon-like peptide-1 (GLP-1) released from intestinal L cells in response to nutrients has many physiological effects but particularly enhances glucose-dependent insulin release through the GLP-1 receptor (GLP-1R). GLP-1 7-36 amide, the predominant circulating active form of GLP-1, is rapidly truncated by dipeptidyl peptidase-4 to GLP-1 9-36 amide, which is generally considered inactive. Given its physiological roles, the GLP-1R is targeted for treatment of type 2 diabetes. Recently 'compound 2' has been described as both an agonist and positive allosteric modulator of GLP-1 7-36 amide affinity, but not potency, at the GLP-1R. Importantly, we demonstrated previously that exendin 9-39, generally considered a GLP-1R antagonist, enhances compound 2 efficacy (or vice versa) at the GLP-1R. Given that GLP-1 9-36 amide is the major circulating form of GLP-1 post-prandially and is a low affinity weak partial agonist or antagonist at the GLP-1R, we investigated interaction between this metabolite and compound 2 in a cell line with recombinant expression of the human GLP-1R and the rat insulinoma cell line, INS-1E, with native expression of the GLP-1R. We show compound 2 markedly enhances efficacy and potency of GLP-1 9-36 amide for key cellular responses including AMP generation, Ca(2+) signaling and extracellular signal-regulated kinase. Thus, metabolites of peptide hormones including GLP-1 that are often considered inactive may provide a means of manipulating key aspects of receptor function and a novel therapeutic strategy.
    PLoS ONE 01/2012; 7(10):e47936. · 3.73 Impact Factor

Full-text

View
1 Download
Available from