Article

Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity.

Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany.
Human Molecular Genetics (Impact Factor: 6.68). 05/2012; 21(16):3587-603. DOI: 10.1093/hmg/dds190
Source: PubMed

ABSTRACT Increased Tau protein amyloidogenicity has been causatively implicated in several neurodegenerative diseases, collectively called tauopathies. In pathological conditions, Tau becomes hyperphosphorylated and forms intracellular aggregates. The deletion of K280, which is a mutation that commonly appears in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17, enhances Tau aggregation propensity (pro-aggregation). In contrast, introduction of the I277P and I308P mutations prevents β-sheet formation and subsequent aggregation (anti-aggregation). In this study, we created a tauopathy model by expressing pro- or anti-aggregant Tau species in the nervous system of Caenorhabditis elegans. Animals expressing the highly amyloidogenic Tau species showed accelerated Tau aggregation and pathology manifested by severely impaired motility and evident neuronal dysfunction. In addition, we observed that the axonal transport of mitochondria was perturbed in these animals. Control animals expressing the anti-aggregant combination had rather mild phenotype. We subsequently tested several Tau aggregation inhibitor compounds and observed a mitigation of Tau proteotoxicity. In particular, a novel compound that crosses the blood-brain barrier of mammals proved effective in ameliorating the motility as well as delaying the accumulation of neuronal defects. Our study establishes a new C. elegans model of Tau aggregation-mediated toxicity and supports the emerging notion that inhibiting the nucleation of Tau aggregation can be neuroprotective.

1 Follower
 · 
171 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer's disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model.
    Frontiers in Genetics 09/2014; 5:279. DOI:10.3389/fgene.2014.00279
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our aims are to review animal models of tauopathies, which include a number of brain disorders with various aetiologies, including aging, genetics, infectious diseases, toxins, trauma, and other unknown factors. Tauopathies are characterised by the accumulation of filaments of the microtubule-associated tau protein. The different aetiopathogeneses and distinct molecular events involved in tau aggregation have led to the development of various animal models for these diseases. In this review, rather than listing all current models, we focus on specific animal models addressing, among others, the question of tau hyperphosphorylation, tau aggregation and tau spreading. Physiological conditions, including normal aging and hibernation, may exhibit tau phosphorylation and some aspects of tauopathies. However, most of the models of tauopathies involve genetically modified animals (mostly rodents, but also fruit fly, zebrafish, and worm). Some of these models have been crucial for the development of therapeutic approaches in humans. The present review shows the difficulty in pinpointing a specific mechanism that may be targeted in tauopathies but also opens up new avenues for innovative therapeutic strategies. This article is protected by copyright. All rights reserved.
    Neuropathology and Applied Neurobiology 11/2014; 41(1). DOI:10.1111/nan.12200 · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The disheartening results of recent clinical trials for neurodegenerative disease (ND) therapeutics underscore the need for a more comprehensive understanding of the underlying disease biology before effective therapies can be devised. One hallmark of many NDs is a disruption in protein homeostasis. Therefore, investigating the role of protein homeostasis in these diseases is central to delineating their underlying pathobiology. Here, we review the seminal role that chemical biology has played in furthering the research on and treatment of dysfunctional protein homeostasis in NDs. We also discuss the vital and predictive role of model systems in identifying conserved homeostasis pathways and genes therein that are altered in neurodegeneration. Integrating approaches from chemical biology with the use of model systems yields a powerful toolkit with which to unravel the complexities of ND biology.
    Nature Chemical Biology 11/2014; 10(11):911-920. DOI:10.1038/nchembio.1663 · 13.22 Impact Factor

Full-text

Download
64 Downloads
Available from
May 17, 2014