Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity.

Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany.
Human Molecular Genetics (Impact Factor: 6.68). 05/2012; 21(16):3587-603. DOI: 10.1093/hmg/dds190
Source: PubMed

ABSTRACT Increased Tau protein amyloidogenicity has been causatively implicated in several neurodegenerative diseases, collectively called tauopathies. In pathological conditions, Tau becomes hyperphosphorylated and forms intracellular aggregates. The deletion of K280, which is a mutation that commonly appears in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17, enhances Tau aggregation propensity (pro-aggregation). In contrast, introduction of the I277P and I308P mutations prevents β-sheet formation and subsequent aggregation (anti-aggregation). In this study, we created a tauopathy model by expressing pro- or anti-aggregant Tau species in the nervous system of Caenorhabditis elegans. Animals expressing the highly amyloidogenic Tau species showed accelerated Tau aggregation and pathology manifested by severely impaired motility and evident neuronal dysfunction. In addition, we observed that the axonal transport of mitochondria was perturbed in these animals. Control animals expressing the anti-aggregant combination had rather mild phenotype. We subsequently tested several Tau aggregation inhibitor compounds and observed a mitigation of Tau proteotoxicity. In particular, a novel compound that crosses the blood-brain barrier of mammals proved effective in ameliorating the motility as well as delaying the accumulation of neuronal defects. Our study establishes a new C. elegans model of Tau aggregation-mediated toxicity and supports the emerging notion that inhibiting the nucleation of Tau aggregation can be neuroprotective.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer's disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model.
    Frontiers in Genetics 09/2014; 5:279.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Many human diseases result from a failure of a single protein to achieve the correct folding and tertiary conformation. These so-called 'conformational diseases' involve diverse proteins and distinctive cellular pathologies. They all engage the proteostasis network (PN), to varying degrees in an attempt to mange cellular stress and restore protein homeostasis. The insulin/insulin-like growth factor signaling (IIS) pathway is a master regulator of cellular stress response, which is implicated in regulating components of the PN. Areas covered: This review focuses on novel approaches to target conformational diseases. The authors discuss the evidence supporting the involvement of the IIS pathway in modulating the PN and regulating proteostasis in Caenorhabditis elegans. Furthermore, they review previous PN and IIS drug screens and explore the possibility of using C. elegans for whole organism-based drug discovery for modulators of IIS-proteostasis pathways. Expert opinion: An alternative approach to develop individualized therapy for each conformational disease is to modulate the global PN. The involvement of the IIS pathway in regulating longevity and response to a variety of stresses is well documented. Increasing data now provide evidence for the close association between the IIS and the PN pathways. The authors believe that high-throughput screening campaigns, which target the C. elegans IIS pathway, may identify drugs that are efficacious in treating numerous conformational diseases.
    Expert Opinion on Drug Discovery 07/2014; · 3.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Similar to other organisms, necrotic cell death in the nematode Caenorhabditis elegans is manifested as the catastrophic collapse of cellular homeostasis, in response to overwhelming stress that is inflicted either in the form of extreme environmental stimuli or by intrinsic insults such as the expression of proteins carrying deleterious mutations. Remarkably, necrotic cell death in C. elegans and pathological cell death in humans share multiple fundamental features and mechanistic aspects. Therefore, mechanisms mediating necrosis are also conserved across the evolutionary spectrum and render the worm a versatile tool, with the capacity to facilitate studies of human pathologies. Here, we overview necrotic paradigms that have been characterized in the nematode and outline the cellular and molecular mechanisms that mediate this mode of cell demise. In addition, we discuss experimental approaches that utilize C. elegans to elucidate the molecular underpinnings of devastating human disorders that entail necrosis.
    Methods in enzymology. 01/2014; 545:127-55.


Available from
May 17, 2014