Fluoride decreased osteoclastic bone resorption through the inhibition of NFATc1 gene expression.

Key Laboratory of Etiologic Epidemiology, Ministry of Health (23618104), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, People's Republic of China.
Environmental Toxicology (Impact Factor: 2.71). 05/2012; DOI: 10.1002/tox.21784
Source: PubMed

ABSTRACT Over the past two decades, fluoride effects on osteoclasts have been evaluated; however, its molecular mechanisms remain unclear. In this study, we investigated the effect of fluoride on osteoclast formation, function, and regulation using osteoclasts formed from mice bone marrow macrophages treated with the receptor activator of NF-κB ligand and macrophage colony-stimulating factor. Our data showed that fluoride levels ≤ 8 mg/L had no effect on osteoclast formation; however, it significantly reduced osteoclast resorption at 0.5 mg/L. Fluoride activity on bone resorption occurred through the inhibition of nuclear factor of active T cells (NFAT) c1 expression. Furthermore, the expression of its downstream genes, including the dendritic cell-specific transmembrane protein, c-Src, the d2 isoform of vacuolar (H+) ATPase v0 domain, matrix metalloproteinase 9, and cathepsin K were decreased, leading to impaired osteoclast acidification, reduced secretion of proteolytic enzymes, and decreased bone resorption. In summary, our results suggested that fluoride has different roles in osteoclast formation and function. Fluoride ≤ 8 mg/L did not impact osteoclast formation; however, it significantly decreased the resorption activity of newly formed osteoclasts. The molecular mechanism of fluoride action may involve inhibition of NFATc1 and its downstream genes. © 2012 Wiley Periodicals, Inc. Environ Toxicol, 2012.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although cadmium (Cd) and fluoride may both have adverse effects on bone, most studies focus on a single agent. In this study, we investigated the effects of cadmium and fluoride on bone at a relative low level. Sprague-Dawley male rats were assigned randomly into four groups which were given sodium chloride, cadmium (50mg/L), and fluoride (20mg/L) alone, or in combination via drinking water. At the 12th week, urine, blood, and bone tissues were collected for biomarker assay, biomechanical assay, and histological assay. Cadmium had significantly adverse effects on bone mineral density, bone biomechanical property, and bone microstructure. Fluoride slightly increased vertebral bone mineral density but negatively affected bone biomechanical property and bone microstructure. Fluoride could reverse the decrease of vertebral bone mineral density caused by cadmium but could not improve the damage of bone biomechanical property and microstructure caused by cadmium. Tartrate-resistant acid phosphatase 5b levels in rats treated with cadmium and fluoride or in combination were 1-2.5 folds higher than the control. Our data suggest that low level of fluoride could reverse the decrease of vertebral bone mineral density caused by cadmium exposure but has no influence on appendicular skeleton damage caused by cadmium.
    Biological trace element research 07/2013; · 1.92 Impact Factor