A chain-retrieval model for voluntary task switching

Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, B-9000 Gent, Belgium.
Cognitive Psychology (Impact Factor: 3.57). 05/2012; 65(2):241-83. DOI: 10.1016/j.cogpsych.2012.04.003
Source: PubMed

ABSTRACT To account for the findings obtained in voluntary task switching, this article describes and tests the chain-retrieval model. This model postulates that voluntary task selection involves retrieval of task information from long-term memory, which is then used to guide task selection and task execution. The model assumes that the retrieved information consists of acquired sequences (or chains) of tasks, that selection may be biased towards chains containing more task repetitions and that bottom-up triggered repetitions may overrule the intended task. To test this model, four experiments are reported. In Studies 1 and 2, sequences of task choices and the corresponding transition sequences (task repetitions or switches) were analyzed with the help of dependency statistics. The free parameters of the chain-retrieval model were estimated on the observed task sequences and these estimates were used to predict autocorrelations of tasks and transitions. In Studies 3 and 4, sequences of hand choices and their transitions were analyzed similarly. In all studies, the chain-retrieval model yielded better fits and predictions than statistical models of event choice. In applications to voluntary task switching (Studies 1 and 2), all three parameters of the model were needed to account for the data. When no task switching was required (Studies 3 and 4), the chain-retrieval model could account for the data with one or two parameters clamped to a neutral value. Implications for our understanding of voluntary task selection and broader theoretical implications are discussed.

Download full-text


Available from: André Vandierendonck, Aug 13, 2015
  • Source
    • "Converging evidence for such an interpretation of our results comes from voluntary task switching experiments, where subjects seem to choose sequences of actions, not individual actions in each trial (Vandierendonck et al. 2012). According to Holroyd and Yeung, the specific function of the ACC then is to select which of the available choice sequences to implement. "
    [Show abstract] [Hide abstract]
    ABSTRACT: When choosing actions, humans have to balance carefully between different task demands. On the one hand, they should perform tasks repeatedly to avoid frequent and effortful switching between different tasks. On the other hand, subjects have to retain their flexibility to adapt to changes in external task demands such as switching away from an increasingly difficult task. Here, we developed a difficulty-based choice task to investigate how subjects voluntarily select task-sets in predictably changing environments. Subjects were free to choose 1 of the 3 task-sets on a trial-by-trial basis, while the task difficulty changed dynamically over time. Subjects self-sequenced their behavior in this environment while we measured brain responses with functional magnetic resonance imaging (fMRI). Using multivariate decoding, we found that task choices were encoded in the medial prefrontal cortex (dorso-medial prefrontal cortex, dmPFC, and dorsal anterior cingulate cortex, dACC). The same regions were found to encode task difficulty, a major factor influencing choices. Importantly, the present paradigm allowed us to disentangle the neural code for task choices and task difficulty, ensuring that activation patterns in dmPFC/dACC independently encode these 2 factors. This finding provides new evidence for the importance of the dmPFC/dACC for task-selection and motivational functions in highly dynamic environments.
    Cerebral Cortex 07/2014; DOI:10.1093/cercor/bhu155 · 8.67 Impact Factor
  • Source
    • "On explicit trials, this mental model is not required, as the only current goal is to perform the instructed task. A recent model of task choice in the VTS paradigm suggests that participants generate short sequences which are maintained in working memory to guide task selection (Vandierendonck et al., 2012). Given that across a variety of tasks the LFP co-activates with the fronto-parietal control network and the other regions of the cingulo-opercular network (Gilbert et al., 2010), the LFP is in a position to represent overall task goals that can then be implemented by the more posterior control regions of the frontoparietal control network and the cinguloopercular network. "
    [Show abstract] [Hide abstract]
    ABSTRACT: While some prior work suggests that medial prefrontal cortex (MFC) regions mediate freely chosen actions, other work suggests that the lateral frontal pole (LFP) is responsible for control of abstract, internal goals. The present study uses fMRI to determine whether the voluntary selection of a task in pursuit of an overall goal relies on MFC regions or the LFP. To do so, we used a modified voluntary task switching (VTS) paradigm, in which participants choose an individual task to perform on each trial (i.e., a subgoal), under instructions to perform the tasks equally often and in a random order (i.e. the overall goal). In conjunction, we examined patterns of activation in the face of irrelevant, but task-related external stimuli that might nonetheless influence task selection. While there was some evidence that the MFC was involved in voluntary task selection, we found that the LFP and anterior insula (AI) were crucial to task selection in the pursuit of an overall goal. In addition, activation of the LFP and AI increased in the face of environmental stimuli that might serve as an interfering or conflicting external bias on voluntary task choice. These findings suggest that the LFP supports task selection according to abstract, internal goals, and leaves open the possibility that MFC may guide action selection in situations lacking in such top-down biases. As such, the current study represents a critical step towards understanding the neural underpinnings of how tasks are selected voluntarily to enable an overarching goal.
    NeuroImage 08/2013; 84. DOI:10.1016/j.neuroimage.2013.08.047 · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Task representations consist of different aspects such as the representations of the relevant stimuli, the abstract rules to be applied, and the actions to be performed. To be flexible in our daily lives, we frequently need to switch between some or all aspects of a task. In the present study, we examined whether switching between abstract task rules and switching between response hands is associated with overlapping regions in the posterior lateral frontal cortex and whether switching between these two aspects of a task representation is neurally implemented by distinct functional brain networks. Subjects performed a cue-based task-switching paradigm where the location of the task cue additionally specified the response hand to be used. Overlapping activity for switching between abstract rules versus response hands was present in the inferior frontal junction area of the posterolateral frontal cortex. This region, however, showed very distinct patterns of functional connectivity depending on the content of the switch: Increased functional connectivity with anterior prefrontal, superior frontal, and hippocampal regions was present for abstract rule switching, whereas response hand switching led to increased coupling with motor regions surrounding the central sulcus. These results reveal that a rather general involvement of the posterior lateral frontal cortex in different switching contexts can be further characterized by highly specific functional interactions with other task-relevant regions, depending on the content of the switch.
    Journal of Cognitive Neuroscience 05/2011; 23(11):3529-39. DOI:10.1162/jocn_a_00062 · 4.69 Impact Factor
Show more