Article

A chain-retrieval model for voluntary task switching

Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, B-9000 Gent, Belgium.
Cognitive Psychology (Impact Factor: 3.57). 05/2012; 65(2):241-83. DOI: 10.1016/j.cogpsych.2012.04.003
Source: PubMed

ABSTRACT To account for the findings obtained in voluntary task switching, this article describes and tests the chain-retrieval model. This model postulates that voluntary task selection involves retrieval of task information from long-term memory, which is then used to guide task selection and task execution. The model assumes that the retrieved information consists of acquired sequences (or chains) of tasks, that selection may be biased towards chains containing more task repetitions and that bottom-up triggered repetitions may overrule the intended task. To test this model, four experiments are reported. In Studies 1 and 2, sequences of task choices and the corresponding transition sequences (task repetitions or switches) were analyzed with the help of dependency statistics. The free parameters of the chain-retrieval model were estimated on the observed task sequences and these estimates were used to predict autocorrelations of tasks and transitions. In Studies 3 and 4, sequences of hand choices and their transitions were analyzed similarly. In all studies, the chain-retrieval model yielded better fits and predictions than statistical models of event choice. In applications to voluntary task switching (Studies 1 and 2), all three parameters of the model were needed to account for the data. When no task switching was required (Studies 3 and 4), the chain-retrieval model could account for the data with one or two parameters clamped to a neutral value. Implications for our understanding of voluntary task selection and broader theoretical implications are discussed.

0 Followers
 · 
162 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When choosing actions, humans have to balance carefully between different task demands. On the one hand, they should perform tasks repeatedly to avoid frequent and effortful switching between different tasks. On the other hand, subjects have to retain their flexibility to adapt to changes in external task demands such as switching away from an increasingly difficult task. Here, we developed a difficulty-based choice task to investigate how subjects voluntarily select task-sets in predictably changing environments. Subjects were free to choose 1 of the 3 task-sets on a trial-by-trial basis, while the task difficulty changed dynamically over time. Subjects self-sequenced their behavior in this environment while we measured brain responses with functional magnetic resonance imaging (fMRI). Using multivariate decoding, we found that task choices were encoded in the medial prefrontal cortex (dorso-medial prefrontal cortex, dmPFC, and dorsal anterior cingulate cortex, dACC). The same regions were found to encode task difficulty, a major factor influencing choices. Importantly, the present paradigm allowed us to disentangle the neural code for task choices and task difficulty, ensuring that activation patterns in dmPFC/dACC independently encode these 2 factors. This finding provides new evidence for the importance of the dmPFC/dACC for task-selection and motivational functions in highly dynamic environments.
    Cerebral Cortex 07/2014; DOI:10.1093/cercor/bhu155 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Under conditions of volitional control in multitask environments, subjects may engage in a variety of strategies to guide task selection. The current research examines whether subjects may sometimes use a top-down control strategy of selecting a task-irrelevant stimulus dimension, such as location, to guide task selection. We term this approach a stimulus set selection strategy. Using a voluntary task switching procedure, subjects voluntarily switched between categorizing letter and number stimuli that appeared in two, four, or eight possible target locations. Effects of stimulus availability, manipulated by varying the stimulus onset asynchrony between the two target stimuli, and location repetition were analysed to assess the use of a stimulus set selection strategy. Considered across position condition, Experiment 1 showed effects of both stimulus availability and location repetition on task choice suggesting that only in the 2-position condition, where selection based on location always results in a target at the selected location, subjects may have been using a stimulus set selection strategy on some trials. Experiment 2 replicated and extended these findings in a visually more cluttered environment. These results indicate that, contrary to current models of task selection in voluntary task switching, the top-down control of task selection may occur in the absence of the formation of an intention to perform a particular task.
    Quarterly journal of experimental psychology (2006) 10/2014; 68(4):1-16. DOI:10.1080/17470218.2014.961935 · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.
    Frontiers in Human Neuroscience 08/2014; 08. DOI:10.3389/fnhum.2014.00588 · 2.90 Impact Factor