Article

Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform.

NXTGNT, Ghent University, Ghent, Belgium. .
BMC Medical Genomics (Impact Factor: 3.47). 05/2012; 5:17. DOI: 10.1186/1755-8794-5-17
Source: PubMed

ABSTRACT Hereditary hearing loss (HL) can originate from mutations in one of many genes involved in the complex process of hearing. Identification of the genetic defects in patients is currently labor intensive and expensive. While screening with Sanger sequencing for GJB2 mutations is common, this is not the case for the other known deafness genes (> 60). Next generation sequencing technology (NGS) has the potential to be much more cost efficient. Published methods mainly use hybridization based target enrichment procedures that are time saving and efficient, but lead to loss in sensitivity. In this study we used a semi-automated PCR amplification and NGS in order to combine high sensitivity, speed and cost efficiency.
In this proof of concept study, we screened 15 autosomal recessive deafness genes in 5 patients with congenital genetic deafness. 646 specific primer pairs for all exons and most of the UTR of the 15 selected genes were designed using primerXL. Using patient specific identifiers, all amplicons were pooled and analyzed using the Roche 454 NGS technology. Three of these patients are members of families in which a region of interest has previously been characterized by linkage studies. In these, we were able to identify two new mutations in CDH23 and OTOF. For another patient, the etiology of deafness was unclear, and no causal mutation was found. In a fifth patient, included as a positive control, we could confirm a known mutation in TMC1.
We have developed an assay that holds great promise as a tool for screening patients with familial autosomal recessive nonsyndromal hearing loss (ARNSHL). For the first time, an efficient, reliable and cost effective genetic test, based on PCR enrichment, for newborns with undiagnosed deafness is available.

0 Bookmarks
 · 
143 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Evaluation of the effectiveness of imaging and genetic testing, and establishment of a cost-effective diagnostic protocol for the etiologic diagnosis of sensorineural hearing loss (SNHL) in Brazil. Design: Prospective cohort study. Study sample: Analysis of 100 unrelated Brazilian patients with severe to profound bilateral SNHL submitted to cochlear implant (CI) between 2002 and 2010 at the University of Campinas hospital. The study was based upon three groups: individuals with congenital, progressive, and sudden SNHL. Results: After the diagnostic investigation, the number of cases with unknown etiology was reduced from 72 to 42 (a 42% reduction); 25% of cases were due to environmental factors, 19% to genetic causes, and 14% to inner-ear abnormalities or other clinical features. The genetic and imaging findings contributed to the diagnosis of SNHL in 19% and 20% of the cases analysed, respectively. Molecular testing mainly contributed to the diagnosis of patients with congenital SNHL, while the contribution of radiologic examination was higher for individuals with progressive or sudden SNHL. A sequential diagnostic protocol was proposed based on these data. Conclusions: The proposed diagnostic workup algorithm could provide better optimization of etiologic diagnosis, as well as reduced costs, compared to a simultaneous testing approach.
    International journal of audiology 08/2013; · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeted DNA enrichment coupled with next generation sequencing has been increasingly used for interrogation of select sub-genomic regions at high depth of coverage in a cost effective manner. Specificity measured by on-target efficiency is a key performance metric for target enrichment. Non-specific capture leads to off-target reads, resulting in waste of sequencing throughput on irrelevant regions. Microdroplet-PCR allows simultaneous amplification of up to thousands of regions in the genome and is among the most commonly used strategies for target enrichment. Here we show that carryover of single-stranded template genomic DNA from microdroplet-PCR constitutes a major contributing factor for off-target reads in the resultant libraries. Moreover, treatment of microdroplet-PCR enrichment products with a nuclease specific to single-stranded DNA alleviates off-target load and improves enrichment specificity. We propose that nuclease treatment of enrichment products should be incorporated in the workflow of targeted sequencing using microdroplet-PCR for target capture. These findings may have a broad impact on other PCR based applications for which removal of template DNA is beneficial.
    PLoS ONE 01/2014; 9(7):e103491. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resequencing of deafness related genes using GS FLX massive parallel sequencing of PCR amplicons spanning selected genes has previously been reported as a successful strategy to discover causal variants. The amplicon lengths were designed to be smaller than the sequencing read length of GS FLX technology, but are longer than Illumina sequencing technology read lengths. Fragmentation is thus required to sequence these amplicons using high throughput Illumina technology.
    BMC Research Notes 08/2014; 7(1):509.

Full-text

View
31 Downloads
Available from
May 28, 2014