Article

Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
Physiologia Plantarum (Impact Factor: 3.26). 05/2012; 147(2). DOI: 10.1111/j.1399-3054.2012.01653.x
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are critical post-transcriptional modulators of gene expression involving in plant responses to abiotic stress. However, the regulation of miRNA in the morphological response to waterlogging is poorly understood in maize. In this study, we detected miRNAs and their targets that expressed in waterlogged crown roots of maize seedlings in two inbred lines (Hz32 and Mo17) by RNA sequencing. A total of 61 mature miRNAs were found including 36 known maize (zma) miRNAs and 25 potential novel miRNA candidates. Comparison of miRNA expression in both waterlogged and control crown roots revealed 32 waterlogging-responsive miRNAs, most were consistently downregulated under waterlogging in the two inbred lines. We identified the miRNA targets through degradome sequencing. Many known miRNA targets involving in transcription regulation and reactive oxygen species elimination were found in the degradome libraries, and 17 targets of 10 newly detected miRNAs were identified as well. Moreover, the miRNA-mediated pathways that respond to waterlogging and regulate the induction of crown roots were discussed. This study is a comprehensive survey of responsive miRNAs in waterlogged maize crown roots. The results will help to understand the miRNA expression in response to waterlogging and miRNA-mediated regulation of morphological adaptation to waterlogging in maize.

1 Follower
 · 
120 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soil waterlogging is one of the major abiotic stresses affecting maize grain yields. To understand the molecular mechanisms underlying waterlogging tolerance in maize, the iTRAQ LC-MS/MS technique was employed to map the proteomes of seedling root cells of the A3237 (tolerant inbred) and A3239 (sensitive inbred) lines under control and waterlogging conditions. Among the 3318 proteins identified, 211 were differentially abundant proteins (DAPs), of which 81 were specific to A3237 and 57 were specific to A3239. These DAPs were categorized into 11 groups that were closely related to the plant stress response, including metabolism, energy, transport and disease/defense. In the waterlogged A3237 root cells, NADP-malic enzyme, glutamate decarboxylase, coproporphyrinogen III oxidase, glutathione S-transferase, glutathione dehydrogenase and xyloglucan endotransglycosylase 6 were specifically accumulated to manage energy consumption, maintain pH levels and minimize oxidative damage. The evaluations of five specific physiological parameters (alcohol dehydrogenase activity and glutathione, malondialdehyde, ATP and NAD+ concentrations) were in agreement with the proteomic results. Moreover, based on the proteomic assay, 8 representative genes encoding DAPs were selected for validation at the transcriptional level. qRT-PCR revealed that the expression levels of these genes correlated with their observed protein abundances. These findings shed light on the complex mechanisms underlying waterlogging tolerance in maize. The data have been deposited into the ProteomeXchange with the identifier PXD001125.This article is protected by copyright. All rights reserved
    Proteomics 01/2015; 15(1). DOI:10.1002/pmic.201400156 · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are a class of noncoding small RNAs (sRNAs) that are 20-24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play versatile roles in plants, functioning in processes such as growth, development and stress responses. Chilling is a common abiotic stress that seriously affects plants growth and development. Recently, chilling-responsive miRNAs have been detected in several plant species. However, little is known about the miRNAs in the model plant tomato. 'LA1777' (Solanum habrochaites) has been shown to survive chilling stress due to its various characteristics. Here, two small RNA libraries and two degradome libraries were produced from chilling-treated (CT) and non-chilling-treated (NT) leaves of S. habrochaites seedlings. Following high-throughput sequencing and filtering, 161 conserved and 236 novel miRNAs were identified in the two libraries. Of these miRNAs, 192 increased in the response to chilling stress while 205 decreased. Furthermore, the target genes of the miRNAs were predicted using a degradome sequencing approach. It was found that 62 target genes were cleaved by 42 conserved miRNAs, while nine target genes were cleaved by nine novel miRNAs. Additionally, nine miRNAs and six target genes were validated by quantitative real-time PCR (qRT-PCR). Target gene functional analysis showed that most target genes played positive roles in the chilling response, primarily by regulating the expression of anti-stress proteins, antioxidant enzyme and genes involved in cell wall formation. Tomato is an important model plant for basic biological research. In this study, numerous conserved and novel miRNAs involved in the chilling response were identified using high-throughput sequencing, and the target genes were analyzed by degradome sequencing. The work helps identify chilling-responsive miRNAs in tomato and increases the number of identified miRNAs involved in chilling stress. Furthermore, the work provides a foundation for further study of the regulation of miRNAs in the plant response to chilling stress.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strigolactones were described as a new group of phytohormones in 2008 and since then notable large number of their functions has been uncovered, including the regulation of plant growth and development, interactions with other organisms and a plant’s response to different abiotic stresses. In the last year, investigations of the strigolactone biosynthesis pathway in two model species, Arabidopsis thaliana and Oryza sativa, resulted in great progress in understanding the functions of four enzymes that are involved in this process. We performed in silico analyses, including the identification of the cis-regulatory elements in the promoters of genes encoding proteins of the strigolactone biosynthesis pathway and the identification of the miRNAs that are able to regulate their posttranscriptional level. We also searched the databases that contain the microarray data for the genes that were analyzed from both species in order to check their expression level under different growth conditions. The results that were obtained indicate that there are universal regulations of expression of all of the genes that are involved in the strigolactone biosynthesis in Arabidopsis and rice, but on the other hand each stage of strigolactone production may be additionally regulated independently. This work indicates the presence of crosstalk between strigolactones and almost all of the other phytohormones and suggests the role of strigolactones in the response to abiotic stresses, such as wounding, cold or flooding, as well as in the response to biotic stresses.
    International Journal of Molecular Sciences 03/2015; 16(4):6757-6782. DOI:10.3390/ijms16046757 · 2.34 Impact Factor