Characterizing the spatial and temporal variation of malaria incidence in Bangladesh, 2007.

Infectious Disease Epidemiology Unit, Level 4 Public Health Building, School of Population Health, University of Queensland, Herston, QLD, 4006, Australia. .
Malaria Journal (Impact Factor: 3.49). 05/2012; 11:170. DOI: 10.1186/1475-2875-11-170
Source: PubMed

ABSTRACT Malaria remains a significant health problem in Bangladesh affecting 13 of 64 districts. The risk of malaria is variable across the endemic areas and throughout the year. A better understanding of the spatial and temporal patterns in malaria risk and the determinants driving the variation are crucial for the appropriate targeting of interventions under the National Malaria Control and Prevention Programme.
Numbers of Plasmodium falciparum and Plasmodium vivax malaria cases reported by month in 2007, across the 70 endemic thanas (sub-districts) in Bangladesh, were assembled from health centre surveillance reports. Bayesian Poisson regression models of incidence were constructed, with fixed effects for monthly rainfall, maximum temperature and elevation, and random effects for thanas, with a conditional autoregressive prior spatial structure.
The annual incidence of reported cases was 34.0 and 9.6 cases/10,000 population for P. falciparum and P. vivax respectively and the population of the 70 malaria-endemic thanas was approximately 13.5 million in 2007. Incidence of reported cases for both types of malaria was highest in the mountainous south-east of the country (the Chittagong Hill Tracts). Models revealed statistically significant positive associations between the incidence of reported P. vivax and P. falciparum cases and rainfall and maximum temperature.
The risk of P. falciparum and P. vivax was spatially variable across the endemic thanas of Bangladesh and also highly seasonal, suggesting that interventions should be targeted and timed according to the risk profile of the endemic areas. Rainfall, temperature and elevation are major factors driving the spatiotemporal patterns of malaria in Bangladesh.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Urban malaria is considered to be one of the most significant infectious diseases due to varied socioeconomic problems especially in tropical countries like India. Among the south Indian cities, Chennai is endemic for malaria. The present study aimed to identify the hot spots of malaria prevalence and the relationship with other factors in Chennai during 2005-2011. Data on zone-wise and ward-wise monthly malaria positive cases were collected from the Vector Control Office, Chennai Corporation, for the year 2005 to 2011 and verified using field data. This data was used to calculate the prevalence among thousand people. Hotspot analysis for all the years in the study period was done to observe the spatial trend. Association of environmental factors like altitude, population density and climatic variables was assessed using ArcGIS 9.3 version and SPSS 11.5. Pearson's correlation of climate parameters at 95% and 99% was considered to be the most significant. Social parameters of the highly malaria prone region were evaluated through a structured random questionnaire field survey. Among the ten zones of Chennai Corporation, Basin Bridge zone showed high malaria prevalence during the study period. The 'hotspot' analysis of malaria prevalence showed the emergence of newer hotspots in the Adyar zone. These hotspots of high prevalence are places of moderately populated and moderately elevated areas. The prevalence of malaria in Chennai could be due to rainfall and temperature, as there is a significant correlation with monthly rainfall and one month lag of monthly mean temperature. Further it has been observed that the socioeconomic status of people in the malaria hotspot regions and unhygienic living conditions were likely to aggravate the malaria problem. Malaria hotspots will be the best method to use for targeting malaria control activities. Proper awareness and periodical monitoring of malaria is one of the quintessential steps to control this infectious disease. It has been argued that identifying the key environmental conditions favourable for the occurrence and spread of malaria must be integrated and documented to aid future predictions of malaria in Chennai.
    Malaria Journal 01/2014; 13(1):14. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Malaria is endemic in 13 of 64 districts in Bangladesh. About 14 million people are at risk. Some evidence suggests that the prevalence of malaria in Bangladesh has decreased since the the Global Fund to Fight AIDS, Tuberculosis and Malaria started to support the National Malaria Control Program (NMCP) in 2007. We did an epidemiological and economic assessment of malaria control in Bangladesh. Methods We obtained annually reported, district-level aggregated malaria case data and information about disbursed funds from the NMCP. We used a Poisson regression model to examine the associations between total malaria, severe malaria, malaria-attributable mortality, and insecticide-treated net coverage. We identifi ed and mapped malaria hotspots using the Getis-Ord Gi* statistic. We estimated the cost-eff ectiveness of the NMCP by estimating the cost per confi rmed case, cost per treated case, and cost per person of insecticide-treated net coverage. Findings During the study period (from Jan 1, 2008, to Dec 31, 2012) there were 285 731 confi rmed malaria cases. Malaria decreased from 6·2 cases per 1000 population in 2008, to 2·1 cases per 1000 population in 2012. Prevalence of all malaria decreased by 65% (95% CI 65–66), severe malaria decreased by 79% (78–80), and malaria-associated mortality decreased by 91% (83–95). By 2012, there was one insecticide-treated net for every 2·6 individuals (SD 0·20). Districts with more than 0·5 insecticide-treated nets per person had a decrease in prevalence of 21% (95% CI 19–23) for all malaria, 25% (17–32) for severe malaria, and 76% (35–91) for malaria-associated mortality among all age groups. Malaria hotspots remained in the highly endemic districts in the Chittagong Hill Tracts. The cost per diagnosed case was US$0·39 (SD 0·02) and per treated case was $0·51 (0·27); $0·05 (0·04) was invested per person per year for health education and $0·68 (0·30) was spent per person per year for insecticide-treated net coverage. Interpretation Malaria elimination is an achievable prospect in Bangladesh and failure to push for elimination nearly ensures a resurgence of disease. Consistent fi nancing is needed to avoid resurgence and maintain elimination goals. Funding None.
    The Lancet Global Health. 02/2014; 2(2).
  • Source
    The Lancet Global Health. 02/2014;


Available from
Jun 11, 2014