Family of Enhanced Photoacoustic Imaging Agents for High-Sensitivity and Multiplexing Studies in Living Mice

Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Palo Alto, California 94305, USA.
ACS Nano (Impact Factor: 12.03). 05/2012; 6(6):4694-701. DOI: 10.1021/nn204352r
Source: PubMed

ABSTRACT Photoacoustic imaging is a unique modality that overcomes to a great extent the resolution and depth limitations of optical imaging while maintaining relatively high contrast. However, since many diseases will not manifest an endogenous photoacoustic contrast, it is essential to develop exogenous photoacoustic contrast agents that can target diseased tissue(s). Here we present a family of novel photoacoustic contrast agents that are based on the binding of small optical dyes to single-walled carbon nanotubes (SWNT-dye). We synthesized five different SWNT-dye contrast agents using different optical dyes, creating five "flavors" of SWNT-dye nanoparticles. In particular, SWNTs that were coated with either QSY(21) (SWNT-QSY) or indocyanine green (SWNT-ICG) exhibited over 100-times higher photoacoustic contrast in living animals compared to plain SWNTs, leading to subnanomolar sensitivities. We then conjugated the SWNT-dye conjugates with cyclic Arg-Gly-Asp peptides to molecularly target the α(v)β(3) integrin, which is associated with tumor angiogenesis. Intravenous administration of these tumor-targeted imaging agents to tumor-bearing mice showed significantly higher photoacoustic signal in the tumor than in mice injected with the untargeted contrast agent. Finally, we were able to spectrally separate the photoacoustic signals of SWNT-QSY and SWNT-ICG in living animals injected subcutaneously with both particles in the same location, opening the possibility for multiplexing in vivo studies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report a strongly amplified photoacoustic (PA) performance of the new functional hybrid material composed of reduced graphene oxide and gold nanorods. Due to the excellent NIR light absorption properties of the reduced graphene oxide coated gold nanorods (r-GO-AuNRs) and highly efficient heat transfer process through the reduced graphene oxide layer, r-GO-AuNRs exhibit excellent photothermal stability and significantly higher photoacoustic amplitudes than those of bare-AuNRs, nonreduced graphene oxide coated AuNRs (GO-AuNRs), or silica-coated AuNR, as demonstrated in both in vitroand in vivosystems. The linear response of PA amplitude from reduced state controlled GO on AuNR indicates the critical role of GO for a strong photothermal effect of r-GO-AuNRs. Theoretical studies with finite-element-method lab-based simulation reveal that a 4 times higher magnitude of the enhanced electromagnetic field around r-GO-AuNRs can be generated compared with bare AuNRs or GO-AuNRs. Furthermore, the r-GOAuNRs are expected to be a promising deep-tissue imaging probe because of extraordinarily high PA amplitudes in the 4�11 MHz operating frequency of an ultrasound transducer. Therefore, the r-GO-AuNRs can be a useful imaging probe for highly sensitive photoacoustic images and NIR sensitive therapeutics based on a strong photothermal effect.
    ACS Nano 03/2015; DOI:10.1021/nn506516p · 12.03 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Personalized medicine could revolutionize how primary care physicians treat chronic disease and how researchers study fundamental biological questions. To realize this goal we need to develop more robust, modular tools and imaging approaches for in vivo monitoring of analytes. In this report, we demonstrate that synthetic nanosensors can measure physiologic parameters with photoacoustic contrast, and we apply that platform to continuously track lithium levels in vivo. Photoacoustic imaging achieves imaging depths that are unattainable with fluorescence or multiphoton microscopy. We validated the photoacoustic results that illustrate the superior imaging depth and quality of photoacoustic imaging with optical measurements. This powerful combination of techniques will unlock the ability to measure analyte changes in deep tissue and will open up photoacoustic imaging as a diagnostic tool for continuous physiological tracking of a wide range of analytes.
    ACS Nano 01/2015; 9(2). DOI:10.1021/nn5064858 · 12.03 Impact Factor