Article

Impact of low-dose ritonavir on danoprevir pharmacokinetics: results of computer-based simulations and a clinical drug-drug interaction study.

Hoffmann-La Roche Inc., Nutley, NJ 07110-1199, USA.
Clinical Pharmacokinetics (Impact Factor: 5.49). 05/2012; 51(7):457-65. DOI: 10.2165/11599700-000000000-00000
Source: PubMed

ABSTRACT Danoprevir, a potent, selective inhibitor of the hepatitis C virus (HCV) NS3/4A protease, is metabolized by cytochrome P450 (CYP) 3A. Clinical studies in HCV patients have shown a potential need for a high danoprevir daily dose and/or dosing frequency. Ritonavir, an HIV-1 protease inhibitor (PI) and potent CYP3A inhibitor, is used as a pharmacokinetic enhancer at subtherapeutic doses in combination with other HIV PIs. Coadministering danoprevir with ritonavir as a pharmacokinetic enhancer could allow reduced danoprevir doses and/or dosing frequency. Here we evaluate the impact of ritonavir on danoprevir pharmacokinetics.
The effects of low-dose ritonavir on danoprevir pharmacokinetics were simulated using Simcyp, a population-based simulator. Following results from this drug-drug interaction (DDI) model, a crossover study was performed in healthy volunteers to investigate the effects of acute and repeat dosing of low-dose ritonavir on danoprevir single-dose pharmacokinetics. Volunteers received a single oral dose of danoprevir 100 mg in a fixed sequence as follows: alone, and on the first day and the last day of 10-day dosing with ritonavir 100 mg every 12 hours.
The initial DDI model predicted that following multiple dosing of ritonavir 100 mg every 12 hours for 10 days, the danoprevir area under the plasma concentration-time curve (AUC) from time zero to 24 hours and maximum plasma drug concentration (C(max)) would increase by about 3.9- and 3.2-fold, respectively. The clinical results at day 10 of ritonavir dosing showed that the plasma drug concentration at 12 hours postdose, AUC from time zero to infinity and C(max) of danoprevir increased by approximately 42-fold, 5.5-fold and 3.2-fold, respectively, compared with danoprevir alone. The DDI model was refined with the clinical data and sensitivity analyses were performed to better understand factors impacting the ritonavir-danoprevir interaction.
DDI model simulations predicted that danoprevir exposures could be successfully enhanced with ritonavir coadministration, and that a clinical study confirming this result was warranted. The clinical results demonstrate that low-dose ritonavir enhances the pharmacokinetic profile of low-dose danoprevir such that overall danoprevir exposures can be reduced while sustaining danoprevir trough concentrations.

0 Bookmarks
 · 
156 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the effects of danoprevir in combination with low-dose ritonavir (danoprevir/r) and placebo plus low-dose ritonavir on the pharmacokinetics of probe drugs for cytochrome P450 (CYP) 3A and CYP2C9, in patients with chronic hepatitis C. A total of 54 patients infected with hepatitis C virus genotype 1 received an oral drug cocktail (2 mg midazolam, 10 mg warfarin and 10 mg vitamin K) before and after 14 days of dosing with either danoprevir/r or placebo plus low-dose ritonavir (placebo/r). Serial pharmacokinetic samples were collected up to 24 (midazolam) and 72 (S-warfarin) h post-dose. Plasma concentrations of midazolam, α-hydroxymidazolam and S-warfarin were measured using validated assays. Pharmacokinetic parameters were estimated using non-compartmental analysis, and geometric mean ratios (GMRs) and 90 % confidence intervals (CIs) for the differences between baseline and post-dosing values were calculated. Danoprevir/r and placebo/r significantly increased midazolam area under the time-concentration curve (AUC0-∞) and reduced the midazolam metabolic ratio while S-warfarin AUC0-∞ was modestly decreased. When danoprevir data were pooled across doses, the midazolam GMR (90 % CI) AUC0-∞ was 9.41 (8.11, 10.9) and 11.14 (9.42, 13.2) following danoprevir/r and placebo/r dosing, respectively, and the S-warfarin GMR (90 % CI) AUC0-∞ was 0.72 (0.68, 0.76) and 0.76 (0.69, 0.85), respectively. The effects of danoprevir/r and placebo/r appeared to be qualitatively similar. Substantial inhibition of CYP3A- and modest induction of CYP2C9- activity were observed with danoprevir/r and low-dose ritonavir.
    European Journal of Clinical Pharmacology 07/2013; · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug development for chronic hepatitis C is progressing at a furious rate; after more than 10 years spent at optimizing Pegylated Interferon and Ribavirin regimens, the ability to design drugs targeting key steps of the HCV life cycle has allowed the development of several directly acting antivirals (DAA). The NS3/4A Protease inhibitors Telaprevir and Boceprevir, have been a major breakthrough for patients and clinicians as they finally allowed patients with HCV genotype 1 to achieve high SVR rates, that top the 80% mark in some highly responsive subgroups (1-4). Unfortunately, both drugs did not solve all our problems due to a significant pill burden, clinically relevant drug-drug interactions and most importantly the fact that their efficacy is heavily relying on the activity of the PegIFN/Rbv backbone. This article is protected by copyright. All rights reserved.
    Liver international: official journal of the International Association for the Study of the Liver 03/2014; · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Danoprevir (RG7227) is a potent macrocyclic inhibitor of the hepatitis C virus NS3/4A protease, which is currently in development in combination with low-dose ritonavir for the treatment of chronic hepatitis C infection. Danoprevir is a substrate of cytochrome P450 3A4, and the organic anion transporting polypeptides (OATP) 1B1 and 1B3. OBJECTIVE: The objective of this study was to evaluate the effect of a potent OATP inhibitor, ciclosporin, on danoprevir pharmacokinetics, when administered as danoprevir/ritonavir. The effect of danoprevir/ritonavir on ciclosporin pharmacokinetics was also investigated. METHODS: This was a single-dose, randomized, open-label, two-sequence, three-period, crossover study in healthy volunteers. In the first period, subjects were randomized to receive either a single oral dose of danoprevir 100 mg in combination with ritonavir 100 mg or a single oral dose of ciclosporin 100 mg. After a 14-day washout, patients were crossed over to receive the opposite treatment. In period 3, all subjects received the combination of danoprevir/ritonavir and ciclosporin following a 14-day washout from period 2. Blood samples were collected serially with each dose for pharmacokinetic assessment. Pharmacokinetic parameters were estimated using non-compartmental analysis. Geometric mean ratios (GMRs) and 90 % confidence intervals (CIs) were used to compare pharmacokinetic parameters [maximum concentration (C max), area under the concentration-time curve from time zero to infinity (AUC∞), and concentration 12 h post-dose (C 12h)] of danoprevir/ritonavir and ciclosporin when administered alone or in combination. Measures of safety and tolerability were also evaluated. RESULTS: A total of 18 subjects were enrolled, and 17 completed the study. The C max, AUC∞, and C 12h GMRs (90 % CI) when danoprevir/ritonavir and ciclosporin were co-administered versus danoprevir/ritonavir or ciclosporin alone were 7.22 (5.42-9.62), 13.6 (11.2-16.6), and 22.5 (17.4-29.3), respectively, for danoprevir, 1.97 (1.72-2.27), 2.23 (2.07-2.42), and 2.50 (2.22-2.81), respectively, for ritonavir, and 1.42 (1.29-1.57), 3.65 (3.27-4.08), and 6.15 (5.32-7.11), respectively, for ciclosporin. All treatments were well tolerated, with no laboratory abnormalities, and no clinically significant changes in vital signs, electrocardiograms, or physical examinations observed. CONCLUSIONS: A significant drug-drug interaction was observed between ciclosporin and danoprevir/ritonavir, leading to substantial increases in exposure to danoprevir and a lesser impact on exposure to ritonavir. Therefore, co-administration of danoprevir/ritonavir with potent OATP inhibitors should be undertaken with appropriate precautions.
    Clinical Pharmacokinetics 05/2013; · 5.49 Impact Factor