Article

Proteome dynamics in primary target organ of infectious bursal disease virus

Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, P. R. China.
Proteomics (Impact Factor: 3.97). 06/2012; 12(11):1844-59. DOI: 10.1002/pmic.201100479
Source: PubMed

ABSTRACT Viruses induce dramatic changes in target tissue during pathogenesis, including host cellular responses that either limit or support the pathogen. The infectious bursal disease virus (IBDV) targets primarily the bursa of Fabricius (BF) of chickens, causing severe immunodeficiency. Here, we characterized the cellular proteome changes of the BF caused by IBDV replication in vivo using 2DE followed MALDI-TOF MS identification. Comparative analysis of multiple 2DE gels revealed that the majority of protein expression changes appeared between 24 and 96 h after IBDV infection. MS identified 54 altered cell proteins, 12 of which were notably upregulated by IBDV infection. Meanwhile, the other 42 cellular proteins were considerably suppressed by IBDV infection and are involved in protein degradation, energy metabolism, stress response, host macromolecular biosynthesis, and transport process. The upregulation of β-actin and downregulation of dynamin during IBDV infection were also confirmed by Western blot and immunofluorescence analysis. These altered protein expressions provide a response profile of chicken BF to virulent IBDV infection. Further functional study on these altered proteins may lead to better understanding of pathogenic mechanisms of virulent IBDV infection and to new potential therapeutic targets.

0 Followers
 · 
164 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chicken MDA5 (chMDA5), the sole known pattern recognition receptor for cytoplasmic viral RNA in chickens, initiates type I interferon (IFN) production. Infectious bursal disease virus (IBDV) evades host innate immunity but the mechanism is unclear. We report here that IBDV inhibited antiviral innate immunity via the chMDA5-dependent signaling pathway. IBDV infection did not induce efficient type I IFN production but antagonized the antiviral activity of IFN-β in DF-1 cells pretreated with IFN-α/β. Dual-luciferase assays and inducible expression systems demonstrated that IBDV protein VP3 significantly inhibited IFN-β expression stimulated by naked IBDV genomic dsRNA. VP3 protein competed strongly with chMDA5 to bind IBDV genomic dsRNA in vitro and in vivo, and VP3 from other birnaviruses also bound dsRNA. Site-directed mutagenesis confirmed that deletion of the VP3 dsRNA binding domain restored IFN-β expression. Our data demonstrate that VP3 inhibits antiviral innate immunity by blocking binding of viral genomic dsRNA to MDA5.
    Journal of Virology 07/2014; 88(19). DOI:10.1128/JVI.01115-14 · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Swine influenza viruses (SIV) are zoonotic pathogens that pose a potential threat to human health. In this study, we analyzed the differential mitochondrial proteomes of H3N2 SIV-infected human lung A549 cells using two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) analysis. In the comparative analysis, 24 altered proteins (13 upregulated and 11 downregulated) were identified in the mitochondria of H3N2 SIV-infected cells; these proteins were involved in cell-to-cell signaling and interaction, cellular movement, and post-translational modification. Moreover, the transcriptional profiles of 16 genes corresponding to the identified proteins were estimated by real time RT-PCR. IPA analysis suggested that the differentially expressed proteins were clustered primarily into the mammalian target of rapamycin (mTOR) and d-glucose signaling pathways. In addition, oxidative phosphorylation and integrin signaling appeared to be major pathways modulated in the mitochondria of infected cells. We further demonstrated that apolipoprotein L2 was upregulated in the cytoplasm and translocated to mitochondria during virus infection. These results were verified by Western blot analysis coupled with confocal microscopy. Collectively, the mitochondrial proteome data provide insights to further understand the underlying mechanisms of H3N2 SIV cross-species infection.
    Journal of Proteomics 10/2013; 91:136-50. DOI:10.1016/j.jprot.2013.06.037 · 3.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Avian reovirus (ARV) is a member of the Orthoreovirus genus in the Reoviridae family. It is the etiological agent of several diseases, among which viral arthritis and malabsorption syndrome are the most commercially important, causing considerable economic losses in the poultry industry. Although a small but increasing number of reports have characterized some aspects of ARV infection, global changes in protein expression in ARV-infected host cells have not been examined. The current study used a proteomics approach to obtain a comprehensive view of changes in protein levels in host cells upon infection by ARV. The proteomics profiles of DF-1 chicken fibroblast cells infected with ARV strain S1133 were analyzed by two-dimensional differential-image gel electrophoresis. The majority of protein expression changes (≥1.5 fold, p<0.05) occurred at 72 h post-infection. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 51 proteins with differential expression levels, including 25 that were upregulated during ARV infection and 26 that were downregulated. These proteins were divided into eight groups according to biological function: signal transduction, stress response, RNA processing, the ubiquitin-proteasome pathway, lipid metabolism, carbohydrate metabolism, energy metabolism, and cytoskeleton organization. They were further examined by immunoblotting to validate the observed alterations in protein expression. This is the first report of a time-course proteomic analysis of ARV-infected host cells. Notably, all identified proteins involved in signal transduction, RNA processing, and the ubiquitin-proteasome pathway were downregulated in infected cells, whereas proteins involved in DNA synthesis, apoptosis, and energy production pathways were upregulated. In addition, other differentially expressed proteins were linked with the cytoskeleton, metabolism, redox regulation, and stress response. These proteomics data provide valuable information about host cell responses to ARV infection and will facilitate further studies of the molecular mechanisms underlying ARV pathogenesis.
    PLoS ONE 03/2014; 9(3):e92154. DOI:10.1371/journal.pone.0092154 · 3.53 Impact Factor