Review about acceleration of plasma by nonlinear forces from picoseond laser pulses and block generated fusion flame in uncompressed fuel

Laser and Particle Beams (Impact Factor: 2.02). 01/2011; 29:353. DOI: 10.1017/S0263034611000413

ABSTRACT In addition to the matured "laser inertial fusion energy" with spherical compression and thermal ignition of deuterium-tritium (DT), a very new alternative for the fast ignition scheme may have now been opened by using side-on block ignition aiming beyond the DT-fusion with igniting the neutron-free reaction of proton-boron-11 (p-11 B). Measurements with laser pulses of terawatt power and ps duration led to the discovery of an anomaly of interaction, if the prepulses are cut off by a factor 10 8 (contrast ratio) to avoid relativistic self focusing in agreement with preceding computations. Applying this to petawatt (PW) pulses for Bobin-Chu conditions of side-on ignition of solid fusion fuel results after several improvements in energy gains of 10,000. This is in contrast to the impossible laser-ignition of p-11 B by the usual spherical compression and thermal ignition. The side-on ignition is less than ten times only more difficult than for DT ignition. This is essentially based on the instant and direct conversion the optical laser energy by the nonlinear force into extremely high plasma acceleration. Genuine two-fluid hydrodynamic computations for DT are presented showing details how ps laser pulses generate a fusion flame in solid state density with an increase of the density in the thin flame region. Densities four times higher are produced automatically confirming a Rankine-Hugoniot shock wave process with an increasing thickness of the shock up to the nanosecond range and a shock velocity of 1500 km/s which is characteristic for these reactions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: An accelerated skin layer may be used to ignite solid state fuels. Detailed analyses were clarified by solving the hydrodynamic equations for nonlinear force driven plasma block ignition. In this paper, the complementary mechanisms are included for the advanced fuel ignition: external factors such as lasers, compression, shock waves, and sparks. The other category is created within the plasma fusion as reheating of an alpha particle, the Bremsstrahlung absorption, expansion, conduction, and shock waves generated by explosions. With the new condition for the control of shock waves, the spherical deuterium-tritium fuel density should be increased to 75 times that of the solid state. The threshold ignition energy flux density for advanced fuel ignition may be obtained using temperature equations, including the ones for the density profile obtained through the continuity equation and the expansion velocity for the r ≠ 0 layers. These thresholds are significantly reduced in comparison with the ignition thresholds at x = 0 for solid advanced fuels. The quantum correction for the collision frequency is applied in the case of the delay in ion heating. Under the shock wave condition, the spherical proton-boron and proton-lithium fuel densities should be increased to densities 120 and 180 times that of the solid state. These plasma compressions are achieved through a longer duration laser pulse or X-ray.
    Chinese Physics B 05/2013; 22(5):055202. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The new possibility of side-on laser ignition of p-11B with negligible radioactivity encouraged to study the fusion of solid state p-7Li fuel that again turns out to be only about 10 times more difficult than the side-on ignition of solid deuterium-tritium using petawatt-picosecond laser pulses at anomalous interaction conditions if very high contrast ratio. Updated cross sections of the nuclear reaction are included.
    Laser and Particle Beams 09/2012; 30(03):459-463. · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A fundamental difference of very high intensity laser interaction with plasmas from solid targets appears with lasing at picosecond (ps) pulse durations in contrast to pulses of nanoseconds (ns). This can be seen from the more than 10,000 times higher acceleration with ps pulse durations than with thermal pressure determined interaction. A ps pulse duration produces instantly acting high-efficiency nonlinear (ponderomotive) electrodynamic force dominated acceleration in contrast to heating with longer pulses. The ps pulses accelerate high-density plasma blocks. This can be used by a new scheme of side-on driven laser fusion with generating a flame ignition in uncompressed fusion fuel of solid density resulting in a reaction velocity of more than 2000 km/s for DT.
    Plasma Science and Technology 05/2013; 15(5):420. · 0.51 Impact Factor


Available from
May 17, 2014