Article

Abundance, distribution, and territory areas of rock-dwelling Lake Tanganyika cichlid fish species

Hydrobiologia (Impact Factor: 1.99). 12/2008; 615(1):57-68. DOI:10.1007/978-1-4020-9582-5_5

ABSTRACT Lake Tanganyika, the second-oldest and second-deepest lake in the world, harbors an impres-sive cichlid fish fauna counting about 250 endemic species that are characterized by a great level of ecological, morphological, and behavioral specializa-tion. This study describes and compares cichlid fish communities at two rocky shores with differential human impact in the south of Lake Tanganyika. Species inventories and depth-dependent abundances were elaborated. About 41 and 46 sympatric cichlid species were recorded in the two study sites, respec-tively. Variabilichromis moorii was the most abundant species (29–60% of total number of fishes), followed by Aulonocranus dewindti (3–19%), Tro-pheus moorii (12%), Ophthalmotilapia ventralis (4–10%), Eretmodus cyanostictus (6–11%), and Cyathopharynx furcifer (0.01–9%). All other species had abundances below 5%. It further emerged that large cichlids such as Petrochromis species, Cyatho-pharynx furcifer, and Lobochilotes labiatus were very rare at one location, with frequencies of 0.55% or less. Territorial sizes of three particularly abundant species, Variabilichromis moorii, Aulonocranus dew-indti, and Tropheus moorii, were assessed by behavioral observations. We distinguished between territorial core areas and total defended area, yielding average core areas between 0.4 (V. moorii) and 1.6 m 2 (T. moorii), and total defended areas averag-ing for each species between 1.6 (V. moorii) and 5.0 m 2 (A. dewindti) with no significant differences between the two study sites. The data on individual densities are also relevant for evolutionary studies, in that they allow more accurate calculations of effec-tive population sizes.

0 0
 · 
1 Bookmark
 · 
181 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Cichlids are an excellent model to study explosive speciation and adaptive radiation. Their evolutionary success has been attributed to their ability to undergo rapid morphological changes related to diet, and their particular breeding biology. Relatively minor changes in morphology allow for exploitation of novel food resources. The importance of phenotypic plasticity and genetically based differences for diversification was long recognized, but their relationship and relative magnitude remained unclear. We compared morphology of individuals of four wild populations of the Lake Tanganyika cichlid Tropheus moorii with their pond-raised F(1) offspring. The magnitude of morphological change via phenotypic plasticity between wild and pond-bred F(1) fish exceeds pairwise population differences by a factor of 2.4 (mean Mahalanobis distances). The genetic and environmental effects responsible for among population differentiation in the wild could still be recognized in the pond-bred F(1) fish. All four pond populations showed the same trends in morphological change, mainly in mouth orientation, size and orientation of fins, and thickness of the caudal peduncle. As between population differentiation was lower in the wild than differentiation between pond-raised versus wild fish, we suggest the narrow ecological niche and intense interspecific competition in rock habitats is responsible for consistent shape similarity, even among long-term isolated populations.
    Naturwissenschaften 02/2011; 98(2):125-34. · 2.14 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Discriminating female mate preferences enhance the variance in reproductive success among males of a population and create a potential for sexual selection, which can account for trait evolution and diversification. Fish color patterns are among the prime targets of mate choice-driven sexual selection. Populations of the cichlid Tropheus from Lake Tanganyika display remarkable geographic color pattern variation, but the role of female choice in their rapid and rich phenotypic diversification is unclear. Males and females establish a pair bond prior to spawning monogamously, but as brood care is strictly maternal, female investment in reproduction is high and the operational sex ratio is male-biased. Therefore, variance in male reproductive success can accrue if individual males succeed repeatedly in securing a mate. To test this prediction in the red colored Tropheus moorii "Chimba", four pairs of males were presented to a series of females and female mate preferences were inferred from pairwise interactions. There was a significant difference in mating success between the males of each pair (P < 0.001 over all trials), as-with one exception-females shared preferences for the same males. Male courtship activity was strongly correlated with female choice. Our experiment suggests that female choice contributes to the variance in male reproductive success in the tested population.
    Hydrobiologia 02/2012; 682(1). · 1.99 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The conditions of phenotypic and genetic population differentiation allow inferences about the evolution, preservation and loss of biological diversity. In Lake Tanganyika, water level fluctuations are assumed to have had a major impact on the evolution of stenotopic littoral species, though this hypothesis has not been specifically examined so far. The present study investigates whether subtly differentiated colour patterns of adjacent Tropheus moorii populations are maintained in isolation or in the face of continuous gene flow, and whether the presumed influence of water level fluctuations on lacustrine cichlids can be demonstrated in the small-scale population structure of the strictly stenotopic, littoral Tropheus. Distinct population differentiation was found even across short geographic distances and minor habitat barriers. Population splitting chronology and demographic histories comply with our expectation of old and rather stable populations on steeper sloping shore, and more recently established populations in a shallower region. Moreover, population expansions seem to coincide with lake level rises in the wake of Late Pleistocene megadroughts ~100 KYA. The imprint of hydrologic events on current population structure in the absence of ongoing gene flow suggests that phenotypic differentiation among proximate Tropheus populations evolves and persists in genetic isolation. Sporadic gene flow is effected by lake level fluctuations following climate changes and controlled by the persistence of habitat barriers during lake level changes. Since similar demographic patterns were previously reported for Lake Malawi cichlids, our data furthermore strengthen the hypothesis that major climatic events synchronized facets of cichlid evolution across the East African Great Lakes.
    Molecular Ecology 06/2011; 20(11):2272-90. · 6.28 Impact Factor

Full-text

View
121 Downloads
Available from
May 24, 2012