High LRRK2 levels fail to induce or exacerbate neuronal alpha-synucleinopathy in mouse brain.

Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
PLoS ONE (Impact Factor: 3.53). 05/2012; 7(5):e36581. DOI: 10.1371/journal.pone.0036581
Source: PubMed

ABSTRACT The G2019S mutation in the multidomain protein leucine-rich repeat kinase 2 (LRRK2) is one of the most frequently identified genetic causes of Parkinson's disease (PD). Clinically, LRRK2(G2019S) carriers with PD and idiopathic PD patients have a very similar disease with brainstem and cortical Lewy pathology (α-synucleinopathy) as histopathological hallmarks. Some patients have Tau pathology. Enhanced kinase function of the LRRK2(G2019S) mutant protein is a prime suspect mechanism for carriers to develop PD but observations in LRRK2 knock-out, G2019S knock-in and kinase-dead mutant mice suggest that LRRK2 steady-state abundance of the protein also plays a determining role. One critical question concerning the molecular pathogenesis in LRRK2(G2019S) PD patients is whether α-synuclein (aSN) has a contributory role. To this end we generated mice with high expression of either wildtype or G2019S mutant LRRK2 in brainstem and cortical neurons. High levels of these LRRK2 variants left endogenous aSN and Tau levels unaltered and did not exacerbate or otherwise modify α-synucleinopathy in mice that co-expressed high levels of LRRK2 and aSN in brain neurons. On the contrary, in some lines high LRRK2 levels improved motor skills in the presence and absence of aSN-transgene-induced disease. Therefore, in many neurons high LRRK2 levels are well tolerated and not sufficient to drive or exacerbate neuronal α-synucleinopathy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The burden that Parkinson's disease (PD) exacts on the population continues to increase year after year. Though refinement of symptomatic treatments continues at a reasonable pace, no accepted therapies are available to slow or prevent disease progression. The leucine-rich repeat kinase 2 (LRRK2) gene was identified in PD genetic studies and offers new hope for novel therapeutic approaches. The evidence linking LRRK2 kinase activity to PD susceptibility is presented, as well as seminal discoveries relevant to the prosecution of LRRK2 kinase inhibition. Finally, suggestions are made for predictive preclinical modeling and successful first-in-human trials. © 2014 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. © 2014 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
    Movement Disorders 02/2015; 30(2). DOI:10.1002/mds.26075 · 5.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is not only characterized by motor disturbances but also, by cognitive, sensory, psychiatric and autonomic dysfunction. It has been proposed that some of these symptoms might be related to the widespread pathology of α-synuclein (α-syn) aggregation in different nuclei of the central and peripheral nervous system. However, the pathogenic formation of α-syn aggregates in different brain areas of PD patients is poorly understood. Most experimental models of PD are valuable to assess specific aspects of its pathogenesis, such as toxin-induced dopaminergic neurodegeneration. However, new models are required that reflect the widespread and progressive formation of α-syn aggregates in different brain areas. Such α-syn aggregation is induced in only a few animal models, for example perikaryon inclusions are found in rats administered rotenone, aggregates with a neuritic morphology develop in mice overexpressing either mutated or wild-type α-syn, and in Smad3 deficient mice, aggregates form extensively in the perikaryon and neurites of specific brain nuclei. In this review we focus on α-syn aggregation in the human disorder, its genetics and the availability of experimental models. Indeed, evidences show that dopamine (DA) metabolism may be related to α-syn and its conformational plasticity, suggesting an interesting link between the two pathological hallmarks of PD: dopaminergic neurodegeneration and Lewy body (LB) formation.
    12/2014; 2(1):176. DOI:10.1186/s40478-014-0176-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important challenge in the field of Parkinson's disease (PD) is to develop disease modifying therapies capable of stalling or even halting disease progression. Coupled to this challenge is the need to identify disease biomarkers, in order to identify pre-symptomatic hallmarks of disease and monitor disease progression. The answer to these challenges lies in the elucidation of the molecular causes underlying PD, for which important leads are disease genes identified in studies investigating the underlying genetic causes of PD. LRRK2 and α-syn have been both linked to familial forms of PD as well as associated to sporadic PD. Another gene, microtubule associated protein tau (MAPT), has been genetically linked to a dominant form of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and genome-wide association studies report a strong association between MAPT and sporadic PD. Interestingly, LRRK2, α-syn, and tau are all phosphorylated proteins, and their phosphorylation patterns are linked to disease. In this review, we provide an overview of the evidence linking LRRK2, α-syn, and tau phosphorylation to PD pathology and focus on studies which have identified phosphatases responsible for dephosphorylation of pathology-related phosphorylations. We also discuss how the LRRK2, α-syn, and tau phosphatases may point to separate or cross-talking pathological pathways in PD. Finally, we will discuss how the study of phosphatases of dominant Parkinsonism proteins opens perspectives for targeting pathological phosphorylation events.
    Frontiers in Genetics 11/2014; 5:382. DOI:10.3389/fgene.2014.00382

Full-text (3 Sources)

Available from
May 27, 2014