Article

Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity

Department of Biotechnology, Guru Nanak Dev University, Amritsar, India.
PLoS ONE (Impact Factor: 3.53). 05/2012; 7(5):e37080. DOI: 10.1371/journal.pone.0037080
Source: PubMed

ABSTRACT Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.

Download full-text

Full-text

Available from: Hardeep Kataria, Jul 03, 2015
0 Followers
 · 
223 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Withania somnifera (Ashwagandha) is an important Rasayana herb and widely considered as Indian ginseng in Ayurveda. In traditional system of Indian medicine, it is used as tonic to rejuvenate the body and increase longevity. In Ayurvedic preparations, various parts of the plant have been used to treat variety of ailments that affect the human health. However, dried roots of the plant are widely used for the treatment of nervous and sexual disorders. The major active chemical constituents of this plant are withanolides, which is responsible for its wide range of biological activities. Since the beginning of the 20 th century, a significant amount of research has been done and efforts are ongoing to further explore other bioactive constituents, and many pharmacological studies have been carried out to describe their disease preventing mechanisms. In this chapter, we have reviewed the chemistry and pharmacological basis of W. somnifera in various human ailments.
    02/2015; 5(1). DOI:10.5667/tang.2014.0030
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overproduction of nitric oxide (NO) plays an important role in glutamate-induced excitotoxicity. Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor. The aim of this study is to explore whether ADMA antagonizes the excitotoxicity of glutamate to neuronal cells and the underlying molecular mechanisms. In this work, we investigated the effects of ADMA on glutamate-induced toxicity in neuronal cells by studying PC12 cells, a clonal rat pheochromocytoma cell line. We show that ADMA obviously protects PC12 cells against glutamate-induced cytotoxicity and apoptosis. We also found that ADMA treatment results in prevention of glutamate-induced mitochondrial membrane potential loss and caspase-3 activation. Moreover, ADMA prevents glutamate-caused down-regulation of bcl-2 protein expression. These results indicate that ADMA protects against glutamate-induced apoptosis and excitotoxicity and the underlying mechanism may be involved in preservation of mitochondrial function by up-regulating the expression of bcl-2. Our study suggests a promising future of ADMA-based therapies for neuropathologies associated with an excess of NO.
    Journal of Molecular Neuroscience 10/2012; 49(1). DOI:10.1007/s12031-012-9897-z · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nutritional infertility is very common in societies where women fail to eat enough to match their energy expenditure and such females often present as clinical cases of anorexia nervosa. The cellular and molecular mechanisms that link energy balance and central regulation of reproduction are still not well understood. Peripheral hormones such as estradiol, testosterone and leptin, as well as neuropeptides like kisspeptin and neuropeptides Y (NPY) play a potential role in regulation of reproduction and energy balance with their primary target converging on the hypothalamic median eminence-arcuate region. The present study was aimed to explore the effects of negative energy state resulting from intermittent fasting dietary restriction (IF-DR) regimen on complete hypothalamo-hypophysial-gonadal axis in Wistar strain young female and male rats. Significant changes in body weight, blood glucose, estrous cyclicity and serum estradiol, testosterone and LH level indicated the negative role of IF-DR regimen on reproduction in these young animals. Further, it was elucidated whether serum level of metabolic hormone, leptin plays a mechanistic role in suppressing hypothalamo-hypophysial-gonadal (HPG) axis via energy regulators, kisspeptin and NPY in rats on IF-DR regimen. We also studied the effect of IF-DR regimen on structural remodeling of GnRH axon terminals in median eminence region of hypothalamus along with the glial cell marker, GFAP and neuronal plasticity marker, PSA-NCAM using immunostaining, Western blotting and RT-PCR. Together these data suggest that IF-DR regimen negatively influences reproduction in young animals due to its adverse effects on complete hypothalamus-hypophysial-gonadal axis and may explain underlying mechanism(s) to understand the clinical basis of nutritional infertility.
    PLoS ONE 01/2013; 8(1):e52416. DOI:10.1371/journal.pone.0052416 · 3.53 Impact Factor