Neuroanatomy of melanocortin-4 receptor pathway in the lateral hypothalamic area

Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9127
The Journal of Comparative Neurology (Impact Factor: 3.23). 12/2012; 520(18):4168-83. DOI: 10.1002/cne.23145
Source: PubMed


The central melanocortin system regulates body energy homeostasis including the melanocortin-4 receptor (MC4R). The lateral hypothalamic area (LHA) receives dense melanocortinergic inputs from the arcuate nucleus of the hypothalamus and regulates multiple processes including food intake, reward behaviors, and autonomic function. By using a mouse line in which green fluorescent protein (GFP) is expressed under control of the MC4R gene promoter, we systemically investigated MC4R signaling in the LHA by combining double immunohistochemistry, electrophysiology, and retrograde tracing techniques. We found that LHA MC4R-GFP neurons coexpress neurotensin as well as the leptin receptor but do not coexpress other peptide neurotransmitters found in the LHA including orexin, melanin-concentrating hormone, and nesfatin-1. Furthermore, electrophysiological recording demonstrated that leptin, but not the MC4R agonist melanotan II, hyperpolarizes the majority of LHA MC4R-GFP neurons in an ATP- sensitive potassium channel-dependent manner. Retrograde tracing revealed that LHA MC4R-GFP neurons do not project to the ventral tegmental area, dorsal raphe nucleus, nucleus accumbens, and spinal cord, and only limited number of neurons project to the nucleus of the solitary tract and parabrachial nucleus. Our findings provide new insights into MC4R signaling in the LHA and its potential implications in homeostatic regulation of body energy balance. J. Comp. Neurol. 4168-4183, 2012. © 2012 Wiley Periodcicals, Inc.

Download full-text


Available from: Kevin W Williams, Feb 11, 2014
  • Source
    • "However, our results indicate that it is unlikely that loss of MC4R signaling in D1R neurons mediates the increased sensitivity to HFD observed in MC4R-null mice. Future studies are warranted to determine the neural substrates through which MC4Rs affect consumption of HFD, such as the LHA, which expresses MC4Rs and is an additional site of reward processing (Cui et al. 2012b). Previous pharmacological studies have shown that intra- NAc infusion of the MC3/4R antagonist SHU9119 significantly blocks most behavioral effects of cocaine including locomotor sensitization (Hsu et al. 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: While it is known that mice lacking melanocortin 4 receptor (MC4R) expression develop hyperphagia resulting in early-onset obesity, the specific neural circuits that mediate this process remain unclear. Here, we report that selective restoration of MC4R expression within dopamine-1 receptor expressing neurons (MC4R/D1R mice) partially blunts the severe obesity seen in MC4R-null mice by decreasing meal size, but not meal frequency, in the dark cycle. We also report that both acute cocaine-induced anorexia and the development of locomotor sensitization to repeated administration of cocaine are blunted in MC4R-null mice and normalized in MC4R/D1R mice. Neuronal retrograde tracing identify the lateral hypothalamic area as the primary target of MC4R-expressing neurons in the nucleus accumbens. Biochemical studies in the ventral striatum demonstrate that phosphorylation of DARPP-32(Thr) (-34) and GluR1(Ser) (-845) is diminished in MC4R-null mice after chronic cocaine administration but rescued in MC4R/D1R mice. These findings highlight a physiological role of MC4R-mediated signaling within D1R neurons in the long-term regulation of energy balance and behavioral responses to cocaine.
    Genes Brain and Behavior 06/2013; 12(6). DOI:10.1111/gbb.12057 · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles for specific ion channels in the central pathways regulating food intake, energy expenditure, and glucose balance.
    Frontiers in Neuroscience 05/2013; 7(7):85. DOI:10.3389/fnins.2013.00085 · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deep brain stimulation of the pedunculopontine tegmental nucleus (PPTg) has been reported to improve gait disturbance in animal models of Parkinsonism and among patients with Parkinson's disease. Evidence suggests that neurons in the PPTg are involved in the control of the sympathetic outflow to the kidneys, and sympathetic regulation is a major component of central melanocortin action. Our recent studies using transneuronal labeling pseudorabies virus (PRV)-614 and melanocortin-4 receptor (MC4R)-green fluorescent protein (GFP) transgenic mice supported the melanocortinergic nature of the middle and caudal PPTg (mPPTg and cPPTg). Because PRV-614/MC4R-GFP double-labeled neurons in the mPPTg and cPPTg were detected, we propose a hypothesis that deep brain stimulation of the PPTg may influence renal function by the melanocortinergic pathway.
    Medical Hypotheses 04/2013; 81(1). DOI:10.1016/j.mehy.2013.03.045 · 1.07 Impact Factor
Show more