Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo.

Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2012; 287(28):23549-61. DOI: 10.1074/jbc.M111.330910
Source: PubMed

ABSTRACT The RNA polymerase II C-terminal domain (CTD), which serves as a scaffold to recruit machinery involved in transcription, is modified post-translationally. Although the O-GlcNAc modification of RNA polymerase II CTD was documented in 1993, its functional significance remained obscure. We show that O-GlcNAc transferase (OGT) modified CTD serine residues 5 and 7. Drug inhibition of OGT and OGA (N-acetylglucosaminidase) blocked transcription during preinitiation complex assembly. Polymerase II and OGT co-immunoprecipitated, and OGT is a component of the preinitiation complex. OGT shRNA experiments showed that reduction of OGT causes a reduction in transcription and RNA polymerase II occupancy at several B-cell promoters. These data suggest that the cycling of O-GlcNAc on and off of polymerase II occurs during assembly of the preinitiation complex. Our results define unexpected roles for both the CTD and O-GlcNAc in the regulation of transcription initiation in higher eukaryotes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification involving an attachment of a single β-N-acetylglucosamine moiety to serine or threonine residues in nuclear and cytoplasmic proteins. Cellular O-GlcNAc levels are regulated by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove the modification, respectively. The levels of O-GlcNAc can rapidly change in response to fluctuations in the extracellular environment; however, O-GlcNAcylation returns to a baseline level quickly after stimulus removal. This process termed O-GlcNAc homeostasis appears to be critical to the regulation of many cellular functions including cell cycle progress, stress response, and gene transcription. Disruptions in O-GlcNAc homeostasis are proposed to lead to the development of diseases, such as cancer, diabetes, and Alzheimer's disease. O-GlcNAc homeostasis is correlated with the expression of OGT and OGA. We reason that alterations in O-GlcNAc levels affect OGA and OGT transcription. We treated several human cell lines with Thiamet-G (TMG, an OGA inhibitor) to increase overall O-GlcNAc levels resulting in decreased OGT protein expression and increased OGA protein expression. OGT transcript levels slightly declined with TMG treatment, but OGA transcript levels were significantly increased. Pretreating cells with protein translation inhibitor cycloheximide did not stabilize OGT or OGA protein expression in the presence of TMG; nor did TMG stabilize OGT and OGA mRNA levels when cells were treated with RNA transcription inhibitor actinomycin D. Finally, we performed RNA Polymerase II chromatin immunoprecipitation at the OGA promoter and found that RNA Pol II occupancy at the transcription start site was lower after prolonged TMG treatment. Together, these data suggest that OGA transcription was sensitive to changes in O-GlcNAc homeostasis and was potentially regulated by O-GlcNAc.
    Frontiers in Endocrinology 12/2014; 5:206.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rpb4 and Rpb7 subunits of eukaryotic RNA polymerase II (RNAPII) participate in a variety of processes from transcription, DNA repair, mRNA export and decay, to translation regulation and stress response. However, their mechanism(s) of action remains unclear. Here, we show that the Rpb4/7 heterodimer in Saccharomyces cerevisiae plays a key role in controlling phosphorylation of the carboxy terminal domain (CTD) of the Rpb1 subunit of RNAPII. Proper phosphorylation of the CTD is critical for the synthesis and processing of RNAPII transcripts. Deletion of RPB4, and mutations that disrupt the integrity of Rpb4/7 or its recruitment to the RNAPII complex, increased phosphorylation of Ser2, Ser5, Ser7 and Thr4 within the CTD. RPB4 interacted genetically with genes encoding CTD phosphatases (SSU72, FCP1), CTD kinases (KIN28, CTK1, SRB10) and a prolyl isomerase that targets the CTD (ESS1). We show that Rpb4 is important for Ssu72 and Fcp1 phosphatases association, recruitment and/or accessibility to the CTD, and that this correlates strongly with Ser5P and Ser2P levels, respectively. Our data also suggest that Fcp1 is the Thr4P phosphatase in yeast. Based on these and other results, we suggest a model in which Rpb4/7 helps recruit and potentially stimulate the activity of CTD-modifying enzymes, a role that is central to RNAPII function. The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 11/2014; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: EGF domain-specific O-linked N-acetylglucosamine (EOGT) is an endoplasmic reticulum (ER)-resident O-linked N-acetylglucosamine (O-GlcNAc) transferase that acts on EGF domain-containing proteins such as Notch receptors. Recently, mutations in EOGT have been reported in patients with Adams-Oliver syndrome (AOS). Here, we have characterized enzymatic properties of mouse EOGT and EOGT mutants associated with AOS. Simultaneous expression of EOGT with Notch1 EGF repeats in human embryonic kidney 293T (HEK293T) cells led to immunoreactivity with the CTD110.6 antibody in the ER. Consistent with the GlcNAc modification in the ER, the enzymatic properties of EOGT are distinct from those of Golgi-resident GlcNAc transferases; the pH optimum of EOGT ranges from 7.0 to 7.5, and the Km value for UDP N-acetylglucosamine (UDP-GlcNAc) is 25 μM. Despite the relatively low Km value for UDP-GlcNAc, EOGT-catalyzed GlcNAcylation depends on the hexosamine pathway, as revealed by the increased O-GlcNAcylation of Notch1 EGF repeats upon supplementation with hexosamine, suggesting differential regulation of luminal UDP-GlcNAc concentration in the ER and the Golgi. As compared with wild-type EOGT, O-GlcNAcylation in the ER is nearly abolished in HEK293T cells exogenously expressing EOGT variants associated with AOS. Introduction of the W207S mutation resulted in degradation of the protein via the ubiquitin-proteasome pathway, although the stability and ER localization of EOGTR377Q were not affected. Importantly, the interaction between UDP-GlcNAc and EOGTR377Q was impaired without adversely affecting acceptor substrate interaction. These results suggest that impaired glycosyltransferase activity in mutant EOGT proteins and the consequent defective O-GlcNAcylation in the ER constitute the molecular basis for AOS. Copyright © 2014, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 12/2014; · 4.60 Impact Factor