The Nonskeletal Effects of Vitamin D: An Endocrine Society Scientific Statement

Tufts University School of Medicine, Boston, MA 02111, USA.
Endocrine reviews (Impact Factor: 21.06). 05/2012; 33(3):456-92. DOI: 10.1210/er.2012-1000
Source: PubMed


Significant controversy has emerged over the last decade concerning the effects of vitamin D on skeletal and nonskeletal tissues. The demonstration that the vitamin D receptor is expressed in virtually all cells of the body and the growing body of observational data supporting a relationship of serum 25-hydroxyvitamin D to chronic metabolic, cardiovascular, and neoplastic diseases have led to widespread utilization of vitamin D supplementation for the prevention and treatment of numerous disorders. In this paper, we review both the basic and clinical aspects of vitamin D in relation to nonskeletal organ systems. We begin by focusing on the molecular aspects of vitamin D, primarily by examining the structure and function of the vitamin D receptor. This is followed by a systematic review according to tissue type of the inherent biological plausibility, the strength of the observational data, and the levels of evidence that support or refute an association between vitamin D levels or supplementation and maternal/child health as well as various disease states. Although observational studies support a strong case for an association between vitamin D and musculoskeletal, cardiovascular, neoplastic, and metabolic disorders, there remains a paucity of large-scale and long-term randomized clinical trials. Thus, at this time, more studies are needed to definitively conclude that vitamin D can offer preventive and therapeutic benefits across a wide range of physiological states and chronic nonskeletal disorders.

Download full-text


Available from: Christopher S. Kovacs, Jan 23, 2014
50 Reads
  • Source
    • "Deficiency of vitamin D was also linked to the presence of anti-thyroid antibodies and abnormal thyroid functions [95] [206]. Hence vitamin D supplementation during the treatment of CHC with Peg-IFN-α based therapy could be beneficial in the prevention/elimination of the associated thyroid disorders; especially that VitD is inexpensive and carries minimal side effects [24] [25] [95] [206]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic hepatitis C (CHC) is one of the most common causes of liver diseases worldwide, affecting 3% of the world population and 3 to 4 million people acquire new infection annually. Despite the recent introduction of novel antiviral drugs for the treatment of CHC, these drugs are expensive and the access to them is not an option for many patients. Hence, the traditional therapy by pegylated interferon-α (Peg-IFN-α) and ribavirin may still have a role in the clinical management of CHC especially in developing countries. However, this standard therapy is associated with several severe extra-hepatic side effects and the most common adverse events are hematological abnormalities and thyroid disorders and they could result in dose reduction and/or termination of therapy. Vitamin D has been shown to be a key regulatory element of the immune system, and its serum concentrations correlate with the severity of liver damage and the development of liver fibrosis/cirrhosis. Furthermore, supplementation with vitamin D with Peg-IFN-α based therapy for the treatment of CHC could be beneficial in increase the response rate to Peg-INF-α based therapy. Vitamin D has also been shown to regulate the thyroid functions and the process of erythropoiesis. This review appraises the data to date researching the role of vitamin D during the treatment of CHC and the potential role of vitamin D in preventing/treating Peg-IFN-α induced thyroiditis and anemia during the course of treatment.
    International Journal of Clinical and Experimental Medicine 09/2015; 8(7):10284-10303. · 1.28 Impact Factor
  • Source
    • "Further emerging vitamin D health relationships include physiological parameters like improved immune response (Baeke et al., 2010; Schwalfenberg, 2011; Hewison, 2012; White, 2012), improved respiratory health(Berry et al., 2011; Charan et al., 2012; Choi et al., 2013; Hirani, 2013) possibly also relate to reduced tuberculosis incidence (Nnoaham and Clarke, 2008; Martineau et al., 2011; Mitchell et al., 2011; Coussens et al., 2012; Salahuddin et al., 2013; Huaman et al., 2014); and reduced risk to develop autoimmune diseases like multiple sclerosis (Solomon and Whitham, 2010; Cantorna, 2012; Dobson et al., 2013) or type 1 diabetes (Hypponen et al., 2001; Holick, 2003; Ramos-Lopez et al., 2006; Baeke et al., 2010; De Boer et al., 2012; Dong et al., 2013; Van Belle et al., 2013). In chronic, non-communicable diseases, vitamin D deficiency is being discussed to possibly ameliorate the incidence of some neoplastic diseases like colorectal, lung, prostate, and breast cancers (Ng et al., 2008; Rosen et al., 2012; Welsh, 2012; Cheng et al., 2013); cardiovascular diseases (CVDs) including hypertension, myocardial infarction, stroke (Forman et al., 2007; Giovannucci et al., 2008; Gardner et al., 2011; Bischoff-Ferrari et al., 2012; Tamez and Thadhani, 2012; Karakas et al., 2013; Pilz et al., 2013a; Schroten et al., 2013); life-style diseases like obesity and type 2 diabetes (Pittas et al., 2007; González-Molero et al., 2012; Khan et al., 2013; Pilz et al., 2013b; Schottker et al., 2013; Tsur et al., 2013; Van Belle et al., 2013; Bouillon et al., 2014); diseases related to the decline in sight function including age-related macular degeneration (Parekh et al., 2007; Millen et al., 2011; Lee et al., 2012); and neurological disorders including Alzheimer and Parkinson disease (Buell and Dawson-Hughes, 2008; Annweiler et al., 2012; Eyles et al., 2013; Zhao et al., 2013). One may wonder about the width of possible implications being looked at, but considering the more than 1000 genes which vitamin D is regulating through the VDR (Carlberg and Campbell, 2013), this may actually not be a surprise. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin D is a micronutrient that is needed for optimal health throughout the whole life. Vitamin D3 (cholecalciferol) can be either synthesized in the human skin upon exposure to the UV light of the sun, or it is obtained from the diet. If the photoconversion in the skin due to reduced sun exposure (e.g. in wintertime) is insufficient, intake of adequate vitamin D from the diet is essential to health. Severe vitamin D deficiency can lead to multitude of avoidable illnesses; among them are well known bone diseases like osteoporosis, a number of autoimmune diseases, many different cancers and some cardiovascular diseases like hypertension are being discussed. Vitamin D is found naturally in only very few foods. Foods containing vitamin D include some fatty fish, fish liver oils, and eggs from hens that have been fed vitamin D and some fortified foods in countries with respective regulations. Base on geographic location or food availability adequate vitamin D intake might not be sufficient on a global scale. The International Osteoporosis Foundation (IOF) has collected the 25-hydroxy-vitamin D plasma levels in populations of different countries using published data and developed a global vitamin D map. This map illustrates the parts of the world, where vitamin D did not reach adequate 25-hydroxyvitamin D plasma levels: 6.7 % of the papers report 25-hydroxyvitamin D plasma levels below 25 nmol/L, which indicates vitamin D deficiency, 37.3 % are below 50 nmol/Land only 11.9% found 25-hydroxy-vitamin D plasma levels above 75 nmol/L target as suggested by vitamin D experts. The vitamin D map is adding further evidence to the vitamin D insufficiency pandemic debate, which is also an issue in the developed world. Besides malnutrition, a condition where the diet does not match to provide the adequate levels of nutrients including micronutrients for growth and maintenance, we obviously have a situation where enough nutrients were consumed, but lacked to reach sufficient vitam
    Frontiers in Physiology 07/2014; 5:248. DOI:10.3389/fphys.2014.00248 · 3.53 Impact Factor
  • Source
    • "Vitamin E, found in abundant quantity in vegetable oil and seeds such as almonds and peanuts, which acts as lipid-soluble antioxidant in cell membranes , and is also known to be very important for maintenance of cell membrane fluidity was significantly lower in fake drug administered rats (Yachi et al. 2010). Whereas vitamin D, a pleiotropic vitamin-hormone that has impact on classical and nonclassical tissues, that it's primarily sites of action are intestine, bone, and kidneys (Rosen et al. 2012) is not significantly different when the three groups were compared using ANOVA. Manganese, Fe, Cr, Mo, Co, riboflavin, thiamine, pyridoxine and pantothenic acid were not significantly different whereas ascorbic acid and vitamin A were significantly different with levels in fake drug administered rats being more significantly lower than either the control or genuine sildenafil citrate dosed rats. "
    05/2014; 2(2). DOI:10.14419/ijbr.v2i2.3161
Show more