Therapeutic Hypothermia for Neonatal Encephalopathy Results in Improved Microstructure and Metabolism in the Deep Gray Nuclei

Department of Neurology, Radiology and Biomedical Imaging, Epidemiology and Biostatistics, and Pediatrics, University of California at San Francisco, San Francisco, California.
American Journal of Neuroradiology (Impact Factor: 3.68). 05/2012; 33(11). DOI: 10.3174/ajnr.A3117
Source: PubMed

ABSTRACT BACKGROUND AND PURPOSE:Therapeutic hypothermia has reduced morbidity and mortality and is associated with a lower burden of lesions on conventional imaging in NE. However, its effects on brain microstructure and metabolism have not been fully characterized. We hypothesized that therapeutic hypothermia improves measures of brain microstructure and metabolism.MATERIALS AND METHODS:Forty-one neonates with moderate/severe NE (29 treated with hypothermia, 12 nontreated) and 12 healthy neonates underwent MR imaging, DTI, and (1)H-MR spectroscopy. MR imaging scans were scored by the predominant pattern of brain injury: normal, watershed, and BG/thalamus. ADC, FA, Lac:NAA, and NAA:Cho values from bilateral BG and thalamus ROIs were averaged. T test and linear regression analysis were used to determine the association between hypothermia and MR imaging quantitative measures.RESULTS:Conventional MR imaging findings were normal in 41% of treated neonates; all nontreated neonates had brain injury. Values of MR imaging metrics were closer to normal in treated neonates compared with nontreated neonates: ADC was 63% higher in the BG and 116% higher in the thalamus (both P < .05), and Lac:NAA was 76% lower (P = .04) in the BG. Treated neonates with normal MR imaging findings had normal (1)H-MR spectroscopy metabolites, and ADC was higher by 35% in the thalamus (P = .03) compared with healthy neonates.CONCLUSIONS:Therapeutic hypothermia may reduce disturbances of brain metabolism and preserve its microstructure in the setting of NE, possibly by minimizing cytotoxic edema and cell death. Long-term follow-up studies are required to determine whether early post-treatment DTI and (1)H-MR spectroscopy will be useful biomarkers of treatment response.

Download full-text


Available from: Hannah C Glass, Feb 20, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine specific motor skills in premature infants, match those that correlate with standards tests of motor performance, and MRS measures of abnormal brain biochemistry.
    Journal of pediatric rehabilitation medicine 01/2014; 7(3):219-32. DOI:10.3233/PRM-140291
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic hypothermia is standard of care for infants with hypoxic ischemic encephalopathy. Murine models of hypoxic-ischemic injury exist; however, a well-established mouse model of therapeutic hypothermia following hypoxic-ischemic injury is lacking. The goal of this study was to develop a full-term-equivalent murine model of therapeutic hypothermia after hypoxia-ischemia and examine magnetic resonance imaging, behavior, and histology in a region and sex specific manner. Hypoxic-ischemic injury was induced at postnatal day 10 in C57BL6 mice using a modified Vannucci model. Mice were randomized to control, hypothermia (31˚C for 4h), or normothermia (36˚C) following hypoxic-ischemic injury and stratified by sex. T2-weighted magnetic resonance imaging was obtained at postnatal day 18 and 30 and regional and total cerebral and cerebellar volumes measured. Behavioral assessments were performed on postnatal day 14, 21, and 28. On postnatal day 18, normothermic mice had smaller cerebral volumes (p < 0.001 vs. controls and p = 0.009 vs. hypothermia), while at postnatal day 30 both injured groups had smaller volumes than controls. When stratified by sex, only normothermia treated male mice had smaller cerebral volumes (p = 0.001 vs. control; p = 0.008 vs. hypothermia) at postnatal day 18, which persisted at postnatal day 30 (p = 0.001 vs. control). Female mice had similar cerebral volumes between groups at both day 18 and 30. Cerebellar volumes of hypothermia treated male mice differed from control at day 18, but not at 30. Four hours of therapeutic hypothermia in this murine hypoxic-ischemic injury model provides sustained neuroprotection in the cerebrum of male mice. Due to variable degree of injury in female mice, response to therapeutic hypothermia is difficult to discern. Deficits in female behavior tests are not fully explained by imaging measures and likely represent injury not detectable by volume measurements alone.
    PLoS ONE 03/2015; 10(3):e0118889. DOI:10.1371/journal.pone.0118889 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic stroke is a common neurological disorder lacking a cure. Recent studies show that therapeutic hypothermia is a promising neuroprotective strategy against ischemic brain injury. Several methods to induce therapeutic hypothermia have been established; however, most of them are not clinically feasible for stroke patients. Therefore, pharmacological cooling is drawing increasing attention as a neuroprotective alternative worthy of further clinical development. We begin this review with a brief introduction to the commonly used methods for inducing hypothermia; we then focus on the hypothermic effects of eight classes of hypothermia-inducing drugs: the cannabinoids, opioid receptor activators, transient receptor potential vanilloid, neurotensins, thyroxine derivatives, dopamine receptor activators, hypothermia-inducing gases, adenosine, and adenine nucleotides. Their neuroprotective effects as well as the complications associated with their use are both considered. This article provides guidance for future clinical trials and animal studies on pharmacological cooling in the setting of acute stroke.
    CNS & neurological disorders drug targets 02/2013; DOI:10.2174/1871527311312030010 · 2.70 Impact Factor