Article

A Local Paracrine and Endocrine Network Involving TGFβ, Cox-2, ROS, and Estrogen Receptor β Influences Reactive Stromal Cell Regulation of Prostate Cancer Cell Motility

Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
Molecular Endocrinology (Impact Factor: 4.2). 05/2012; 26(6):940-54. DOI: 10.1210/me.2011-1371
Source: PubMed

ABSTRACT The tumor microenvironment plays a critical role in supporting cancer cells particularly as they disengage from limitations on their growth and motility imposed by surrounding nonreactive stromal cells. We show here that stromal-derived androgenic precursors are metabolized by DU145 human prostate cancer (PCa) cells to generate ligands for estrogen receptor-β, which act to limit their motility through transcriptional regulation of E-cadherin. Although primary human PCa-associated fibroblasts and the human WPMY-1-reactive prostate stromal cell line maintain this inherent estrogen receptor (ER)β-dependent motility inhibitor activity, they are subverted by TGF-β1 pro-oxidant signals derived from cocultured DU145 PCa cells. Specifically, stromal-produced H(2)O(2), which requires Cox-2, acts as a second paracrine factor to inhibit ERβ activity in adjacent DU145 cells. Chromatin immunoprecipitation analysis reveals that ERβ recruitment to the E-cadherin promoter is inhibited when H(2)O(2) is present. Both neutralization of H(2)O(2) with catalase and prevention of its production by silencing Cox-2 expression in stromal cells restore the motility-suppression activity of stromal-derived ERβ ligand precursors. These data suggest that reactive stromal cells may still have a capacity to limit cancer cell motility through a local endocrine network but must be protected from pro-oxidant signals triggered by cancer cell-derived TGF-β1 to exhibit this cancer-suppressive function.

Download full-text

Full-text

Available from: Eugenia Cifuentes-Pagano, Sep 01, 2015
0 Followers
 · 
94 Views
 · 
75 Downloads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carcinoma-associated fibroblasts (CAFs) contribute to both tumor growth and cancer progression. In this report, we applied an emerging transcription factor (TF) activity array to fibroblasts to capture the activity of the intracellular signaling network and to define a signature that distinguishes mammary CAFs from normal mammary fibroblasts. Normal fibroblasts that restrained cancer cell invasion developed into an invasion-promoting CAF phenotype through exposure to conditioned medium from MDA-MB-231 breast cancer cells. A myofibroblast-like CAF cell line expressing high levels of smooth muscle actin was compared to normal mammary fibroblasts before and after induction. Comparison of TF activity profiles for all three fibroblast types identified a TF activity signature common to CAFs which included activation of reporters for TFs ELK1, GATA1, retinoic acid receptor (RAR), serum response factor (SRF), and vitamin D receptor (VDR). Additionally, CAFs resembling myofibroblasts, relative to normal fibroblasts, had elevated activation corresponding to NF-kappaB, RUNX2, and YY1, and distinct activity patterns for several differentiation-related TF reporters. Induction of CAFs by exposure of normal fibroblasts to conditioned medium from MDA-MB-231 cells resulted in increased activation of reporters for HIF1, several STAT TFs, and proliferation-related TFs such as AP1. Myofibroblast-like CAFs and induced normal mammary fibroblasts promoted invasion of breast cancer cells by distinct mechanisms, consistent with their distinct patterns of TF activation. The TF activity profiles of CAF subtypes provide an overview of intracellular signaling associated with the induction of a pro-invasive stroma, and provide a mechanistic link between the microenvironmental stimuli and phenotypic response.
    Cancer Microenvironment 10/2012; 6(1). DOI:10.1007/s12307-012-0121-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: Androgen receptor (AR) signaling is essential for the initial development and progression of prostate cancer (PCa) as well as the growth and survival of castration-resistant tumors. However, AR action may be opposed by estrogen receptor beta (ERß) that responds to androgen metabolites produced in the prostate. The balance between the activity of these two receptors is not only influenced by the steroidogenic capacity of the prostatic microenvironment but also by its redox status and local paracrine signals such as transforming growth factor- beta (TGF-ß). In this review, we highlight the studies that revealed select roles for AR and ERß in distinct compartments of the prostate cancer microenvironment. We also discuss new work that identified stromal-epithelial crosstalk through TGF-ß1 signaling that drives the production of reactive oxygen species in stromal cells thereby selectively limiting the anti-tumor activity of ERß in cancer cells. Therefore, any new therapeutic approaches that seek to limit AR but enhance ERß activity in PCa, must take into account potential adaptive changes in the tumor microenvironment that utilize paracrine signals and altered redox balance to divert local androgen metabolites towards AR at the expense of ERß.
    Steroids 02/2013; DOI:10.1016/j.steroids.2013.01.005 · 2.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emerging evidence has shown that the tumor microenvironment plays a crucial role in prostate cancer (PCa) development and progression. However, the mechanism(s) through which stromal cells regulate epithelial cells and the differences among prostatic stromal cells of different histological/pathological origin in PCa progression remain unclear. Therefore, it is necessary to characterize the stromal cell populations present in benign prostatic hyperplasia (BPH) and PCa. To this end, we used cultures from stromal cells obtained from BPH-derived (15 cases) and PCa-derived (30 cases) primary cultures. In culture, stromal cells are a mixture of fibroblasts, myofibroblasts (MFs) and muscle cells. Fibroblasts are characterized for the expression of vimentin, MFs for the co-expression of α-smooth muscle actin (α-SMA) and vimentin, whereas muscle cells for the expression of α-SMA and desmin. Fibroblasts were present in large amounts in the BPH- compared to the PCa-derived cultures, whereas MFs were more representative of PCa- as opposed to BPH-derived cultures. Some α-SMA-positive cells retained the expression of basal cytokeratin K14. This population was defined as myoepithelial cells and was associated with senescent cultures. The percentage of MFs was higher in high-grade compared to moderate- and low-grade PCa-derived cultures, whereas the number of myoepithelial cells was lower in high-grade compared to moderate- and low-grade PCa-derived cultures. In addition, we analyzed the expression of p75NTR, as well as the expression of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors of MMPs (TIMPs). p75NTR expression was elevated in the stromal cultures derived from PCa compared to those derived from BPH and in cultures derived from cases with Gleason scores ≥7 compared to those derived from cases with Gleason scores <7, as well as in cultures with a high concentration of MFs compared to those with a high concentration of fibroblasts. MMP-2 was secreted by all primary cultures, whereas MMP-9 secretion was observed only in some PCa-derived stromal cells, when the percentage of MFs was significantly higher compared to BPH-derived cultures. TIMP1, TIMP2 and TIMP3 were secreted in elevated amounts in the BPH- compared to the PCa-derived stromal cultures, suggesting the differential regulation of extracellular matrix (ECM) degradation. When we used 22rv1 and PC3 PCa xenograft models for the isolation and characterization of murine cancer-associated fibroblasts (CAFs) we noted that the angiogenic wave was concurrent with the appearance of a reactive stroma phenotype, as determined by staining for α-SMA, vimentin, tenascin, calponin, desmin and Masson's trichrome. In conclusion, MF stromal cells from PCa participate in the progression and metastasis of PCa, modualting inflammation, angiogenesis and epithelial cancer cell proliferation.
    International Journal of Oncology 04/2013; DOI:10.3892/ijo.2013.1892 · 3.03 Impact Factor
Show more