MicroRNA-381 Represses ID1 and is Deregulated in Lung Adenocarcinoma

Department of Clinical Research, University of Bern, Bern, Switzerland.
Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer (Impact Factor: 5.28). 05/2012; 7(7):1069-77. DOI: 10.1097/JTO.0b013e31824fe976
Source: PubMed


MicroRNAs are small, noncoding RNAs that suppress gene expression by binding to the 3' untranslated region (UTR) and thereby repress translation or decrease messenger RNA stability. Inhibitor of differentiation 1 (ID1) is a putative stem-cell gene involved in invasion and angiogenesis. We previously showed that ID1 is regulated by Src kinases, overexpressed in human lung adenocarcinoma, and targeted by Src-dependent microRNAs. The current study focused on the association between miR-381 and ID1 in lung adenocarcinoma.
An ID1 3'UTR-luciferase reporter assay was used to determine whether miR-381 directly targets ID1. Human lung cancer cell lines were stably transduced with a precursor of miR-381 to evaluate its role on ID1 expression and to investigate changes in cell migration and invasion. The Src tyrosine kinase inhibitors saracatinib and dasatinib were used to repress ID1 expression. MiR-381 expression was measured in 18 human lung adenocarcinomas and corresponding normal lung tissue by quantitative reverse-transcription polymerase chain reaction.
ID1 is a direct target of miR-381 as shown by 3'UTR luciferase reporter assays. MiR-381 expression was negatively correlated with ID1 expression in lung cancer cell lines. Ectopic expression of miR-381 reduced ID1 mRNA and protein levels, and significantly decreased cell migration and invasion. Furthermore, miR-381 was significantly downregulated in human lung adenocarcinomas, and low miR-381 expression levels correlated with poor prognosis.
These results suggest that downregulation of miR-381 and thus induction of its target ID1 may contribute to the metastatic potential of lung adenocarcinomas. Further studies to explore potential therapeutic strategies, including Src inhibitors, are ongoing.

Download full-text


Available from: Mario P Tschan,
  • Source
    • "This effect was also observed in renal cancer cells, which miRNA-381 could suppressed the proliferation of cancer cells [21]. Moreover, miRNA-381 further exerted the inhibiting effects in cell migration and invasion of lung adenocarcinoma [22], indicated the carcinostasis of miRNA- 381. However, in glioma, miRNA-381 may act as an oncomiR to stimulate tumor growth [23] [24]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiation resistance poses a major clinical challenge in treatment of esophageal squamous cell carcinoma (ESCC). However, the mechanisms of radioresistance has not been fully elucidated. Since accumulating evidence demonstrates that aberrant expression of microRNAs (miRNAs) contributes to cancer sensitivity to radiation, we aimed to identify miRNAs associated with radioresistance of ESCC. In this study, we used GeneChip miRNA Array to perform an comparison of miRNAs expression in tissues from primary ESCC and recurrent ESCC in situ after radiotherapy. Differential expressions of miRNAs were comfirmed by quantitative Real-Time PCR in tissues and six ESCC cell lines. Cell radiosensitivity were determined by colony formation assay. Functional analyses of miRNA-381 in ESCC cells growth and metastasis were performed by MTT and Transwell Assays. In vivo assays of the functions of miRNA-381 were performed in tumor xenografts. One miRNA candidate, miRNA-381, was found to be downregulated in radiation resistance tissues and cells. Enforced expression of miRNA-381 increased radiosensitivity of ESCC cells and promoted nonaggressive phenotype including decreased cellular proliferation and migration. In contrast, inhibition of miRNA-381 in ESCC cells promoted radiation resistance and development of an aggressive phenotype. In vivo assays extended the significance of these results, showing that miRNA-381 overexpression decreased the tumor growth and the resistance to radiation treatment in tumor xenografts. Together, our work reveals miRNA-381 expression as a critical determinant of radiosensitivity in esophageal cancer cells.
    American Journal of Cancer Research 01/2015; 5(1):267-77. · 4.17 Impact Factor
  • Source
    • "This gene can target the amino acid coding sequence of the crucial pluripotent gene, Nanog, thereby reducing its expression [21]. MiR-381 reportedly represses the expression of inhibitor of differentiation 1 (Id1), which functions in BMP signaling pathway to block ES cell neural differentiation [22]. MiR-449a and miR-449c are expressed during somitogenesis and neurogenesis, and these genes regulate Notch ligand Delta-like 1 (Dll1) expression [23]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: ES cells can propagate indefinitely, maintain self-renewal, and differentiate into almost any cell type of the body. These properties make them valuable in the research of embryonic development, regenerative medicine, and organ transplantation. MicroRNAs (miRNAs) are considered to have essential functions in the maintenance and differentiation of embryonic stem cells (ES cells). It was reported that, strong external stimuli, such as a transient low-pH and hypoxia stress, were conducive to the formation of induced pluripotent stem cells (iPS cells). AICA ribonucleotide (AICAR) is an AMP-activated protein kinase activator, which can let cells in the state of energy stress. We have demonstrated that AICAR can maintain the pluripotency of J1 mouse ES cells through modulating protein expression in our previous research, but its effects on ES cell miRNA expression remain unknown. In this study, we conducted small RNA high-throughput sequencing to investigate AICAR influence on J1 mouse ES cells by comparing the miRNA expression patterns of the AICAR-treated cells and those without treatment. The result showed that AICAR can significantly modulate the expression of multiple miRNAs, including those have crucial functions in ES cell development. Some differentially expressed miRNAs were selected and confirmed by real-time PCR. For the differently expressed miRNAs identified, further study was conducted regarding the pluripotency and differentiation associated miRNAs with their targets. Moreover, miR-134 was significantly down-regulated after AICAR treatment, and this was suggested to be directly associated with the up-regulated pluripotency markers, Nanog and Sox2. Lastly, Myc was significantly down-regulated after AICAR treatment; therefore, we predicted miRNAs that may target Myc and identified that AICAR induced up-regulation of miR-34a, 34b, and 34c can repress Myc expression in J1 mouse ES cells. Taken together, our study provide a new mechanism for AICAR in ES cells pluripotency maintenance and give insight for its usage in iPS cells generation.
    PLoS ONE 07/2014; 9(7):e103724. DOI:10.1371/journal.pone.0103724 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: miR-17-5p is abnormally expressed in various tumor types. The aim of this study was to investigate the expression level of miR-17-5p in serum of patients with lung cancer and to determine whether serum miR-17-5p expression is related to the prognosis of patients with lung cancer. RT-qPCR was used to examine expression of miRNA-17-5p in 20 pairs of lung cancer and adjacent normal tissues, and sera from 221 patients with lung cancer and 54 matched controls. The correlation of serum miR-17-5p with clinicopathological factors or prognosis of patients with lung cancer was analyzed. The expression level of miR-17-5p obviously increased in lung cancer tissues (P = 0.004). Furthermore, serum miR-17-5p expression also significantly increased in patients with lung cancer compared with healthy individuals (P = 0.03). The survival analysis showed that serum miR-17-5p expression was closely related to the survival of patients with lung cancer. Patients with high miR-17-5p expression had shorter survival times [hazard ratio (HR) = 1.767, 95 %CI 1.039-3.005, P = 0.035]. A lower expression level of serum miR-17-5p helps extend the survival of patients with lung cancer. Thus, miR-17-5p may be potential biomarker for prediction the prognosis in patients with lung cancer.
    Medical Oncology 03/2013; 30(1):353. DOI:10.1007/s12032-012-0353-2 · 2.63 Impact Factor
Show more