Cryopreservation of human vascular umbilical cord cells under good manufacturing practice conditions for future cell banks.

German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Laboratory for Tissue Engineering, Augustenburger Platz 1, 13353 Berlin, Germany.
Journal of Translational Medicine (Impact Factor: 3.46). 05/2012; 10:98. DOI: 10.1186/1479-5876-10-98
Source: PubMed

ABSTRACT In vitro fabricated tissue engineered vascular constructs could provide an alternative to conventional substitutes. A crucial factor for tissue engineering of vascular constructs is an appropriate cell source. Vascular cells from the human umbilical cord can be directly isolated and cryopreserved until needed. Currently no cell bank for human vascular cells is available. Therefore, the establishment of a future human vascular cell bank conforming to good manufacturing practice (GMP) conditions is desirable for therapeutic applications such as tissue engineered cardiovascular constructs.
A fundamental step was the adaption of conventional research and development starting materials to GMP compliant starting materials. Human umbilical cord artery derived cells (HUCAC) and human umbilical vein endothelial cells (HUVEC) were isolated, cultivated, cryopreserved (short- and long-term) directly after primary culture and recultivated subsequently. Cell viability, expression of cellular markers and proliferation potential of fresh and cryopreserved cells were studied using trypan blue staining, flow cytometry analysis, immunofluorescence staining and proliferation assays. Statistical analyses were performed using Student's t-test.
Sufficient numbers of isolated cells with acceptable viabilities and homogenous expression of cellular markers confirmed that the isolation procedure was successful using GMP compliant starting materials. The influence of cryopreservation was marginal, because cryopreserved cells mostly maintain phenotypic and functional characteristics similar to those of fresh cells. Phenotypic studies revealed that fresh cultivated and cryopreserved HUCAC were positive for alpha smooth muscle actin, CD90, CD105, CD73, CD29, CD44, CD166 and negative for smoothelin. HUVEC expressed CD31, CD146, CD105 and CD144 but not alpha smooth muscle actin. Functional analysis demonstrated acceptable viability and sufficient proliferation properties of cryopreserved HUCAC and HUVEC.
Adaptation of cell isolation, cultivation and cryopreservation to GMP compliant starting materials was successful. Cryopreservation did not influence cell properties with lasting impact, confirming that the application of vascular cells from the human umbilical cord is feasible for cell banking. A specific cellular marker expression profile was established for HUCAC and HUVEC using flow cytometry analysis, applicable as a GMP compliant quality control. Use of these cells for the future fabrication of advanced therapy medicinal products GMP conditions are required by the regulatory authority.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Widespread use of human umbilical cord cells for cardiovascular tissue engineering requires production of large numbers of well-characterized cells under controlled conditions. In current research projects, the expansion of cells to be used to create a tissue construct is usually performed in static cell culture systems which are, however, often not satisfactory due to limitations in nutrient and oxygen supply. To overcome these limitations dynamic cell expansion in bioreactor systems under controllable conditions could be an important tool providing continuous perfusion for the generation of large numbers of viable pre-conditioned cells in a short time period. For this purpose cells derived from human umbilical cord arteries were expanded in a rotating bed system bioreactor for up to 9 days. For a comparative study, cells were cultivated under static conditions in standard culture devices. Our results demonstrated that the microenvironment in the perfusion bioreactor was more favorable than that of the standard cell culture flasks. Data suggested that cells in the bioreactor expanded 39 fold (38.7 ± 6.1 fold) in comparison to statically cultured cells (31.8 ± 3.0 fold). Large-scale production of cells in the bioreactor resulted in more than 3 x 10(8) cells from a single umbilical cord fragment within 9 days. Furthermore cell doubling time was lower in the bioreactor system and production of extracellular matrix components was higher. With this study, we present an appropriate method to expand human umbilical cord artery derived cells with high cellular proliferation rates in a well-defined bioreactor system under GMP conditions.
    The Open Biomedical Engineering Journal 01/2013; 7:50-61.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Mesenchymal stem cells (MSC) and MSC-like cells hold great promise and offer many advantages for developing effective cellular therapeutics. Current trends indicate that the clinical application of MSC will continue to increase markedly. For clinical applications, large numbers of MSC are usually required, ideally in an off-the-shelf format, thus requiring extensive MSC expansion ex vivo and subsequent cryopreservation and banking. Areas covered: To exploit the full potential of MSC for cell-based therapies requires overcoming significant cell-manufacturing, banking and regulatory challenges. The current review will focus on the identification of optimal cell source for MSC, the techniques for production scale-up, cryopreservation and banking and the regulatory challenges involved. Expert opinion: There has been considerable success manufacturing and cryopreserving MSC at laboratory scale. Surprisingly little attention, however, has been given to translate these technologies to an industrial scale. The development of cost-effective advanced technologies for producing and cryopreserving commercial-scale MSC is important for successful clinical cell therapy.
    Expert opinion on biological therapy 01/2013; · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineering of cardiovascular structures represents a novel approach to improve clinical strategies in heart valve disease treatment. The aim of this study was to engineer decellularized atrioventricular heart valve neoscaffolds with an intact ultrastructure and to reseed them with umbilical cord-derived endothelial cells under physiological conditions in a bioreactor environment. Mitral (n = 38) and tricuspid (n = 36) valves were harvested from 40 hearts of German Landrace swine from a selected abattoir. Decellularization of atrioventricular heart valves was achieved by a detergent-based cell extraction protocol. Evaluation of the decellularization method was conducted with light microscopy and quantitative analysis of collagen and elastin content. The presence of residual DNA within the decellularized atrioventricular heart valves was determined with spectrophotometric quantification. The described decellularization regime produced full removal of native cells while maintaining the mechanical stability and the quantitative composition of the atrioventricular heart valve neoscaffolds. The surface of the xenogeneic matrix could be successfully reseeded with in vitro-expanded human umbilical cord-derived endothelial cells under physiological flow conditions. After complete decellularization with the detergent-based protocol described here, physiological reseeding of the xenogeneic neoscaffolds resulted in the formation of a confluent layer of human umbilical cord-derived endothelial cells. These results warrant further research toward the generation of atrioventricular heart valve neoscaffolds on the basis of decellularized xenogeneic tissue.
    Artificial Organs 06/2014; · 1.96 Impact Factor


Available from