SOCS3 in immune regulation of inflammatory bowel disease and inflammatory bowel disease-related cancer.

Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands.
Cytokine & growth factor reviews (Impact Factor: 6.49). 05/2012; 23(3):127-38. DOI: 10.1016/j.cytogfr.2012.04.005
Source: PubMed

ABSTRACT Inflammatory bowel disease (IBD) has unclear pathogenesis and it is related to the increasing risk of developing colorectal cancer (CRC). Recent studies have uncovered the molecular mechanism of intracellular signaling pathways of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-6. The major transcription factors including STAT3 have been shown to play a major role in transmitting inflammatory cytokine signals to the nucleus. The suppressors of cytokine signaling (SOCS) 3 protein is the key physiological regulators of cytokine-mediated STAT3 signaling. As such it influences the development of inflammatory and malignant disorders like this associated with IBD. Here we review the complex function of SOCS3 in innate and adaptive immunity, different cell types (macrophages, neutrophils, dendritic cells, B cells, T cells and intestinal epithelial cells) and the role of SOCS3 on the pathogenesis of inflammatory bowel disease (IBD) and IBD-related cancer. Finally, we explore how this knowledge may open novel avenues for the rational treatment of IBD and IBD-related cancer.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn's disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology.
    PLoS ONE 01/2013; 8(2):e56818. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: T helper type 17 (Th17) cells have been implicated in autoimmunity and inflammatory bowel disease (IBD). Antigen-presenting cell (APC) -derived cytokines such as interleukin (IL)-1β and IL-6 are key mediators supporting Th17 differentiation, yet how these factors are induced in vivo remains unclear. Here, we show that IL-27 acting on APCs enhances IL-6 and IL-1β production and Th17 differentiation. IL-27Rα-/- T-cell receptor (TCR)β-/- recipients fail to develop gut inflammation following naive CD4 T-cell transfer, whereas IL-27Rα+/+ TCRβ-/- recipients develop severe colitis. Investigation of T-cell responses exhibits that IL-27Rα-/- TCRβ-/- mice do not support Th17 differentiation with significantly decreased levels of IL-6 and IL-1β by APCs. Our study has identified a novel proinflammatory role for IL-27 in vivo that promotes Th17 differentiation by inducing Th17-supporting cytokines in APCs.Mucosal Immunology advance online publication, 16 October 2013; doi:10.1038/mi.2013.82.
    Mucosal Immunology 10/2013; · 7.54 Impact Factor
  • Source
    Frontiers in Immunology 01/2014; 5:357.