Article

High molecular weight hyaluronan reduces lipopolysaccharide mediated microglial activation.

Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada Department of Surgery, University of Toronto, Toronto, Ontario, Canada Division of Genetics and Development, Toronto Western Research Institute and Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
Journal of Neurochemistry (Impact Factor: 3.97). 05/2012; DOI: 10.1111/j.1471-4159.2012.07789.x
Source: PubMed

ABSTRACT J. Neurochem. (2012) 10.1111/j.1471-4159.2012.07789.x ABSTRACT: Toll-like receptor-4 (TLR4) signaling has been implicated in microglial activation and propagation of inflammation following spinal cord injury (SCI). As such, modulating microglial activation through TLR4 represents an attractive therapeutic approach to treat SCI. High molecular weight hyaluronan (HMW-HA), a polymer with multiple therapeutic uses, has been previously shown to modulate TLR4 activation in macrophages and has shown early promise as a therapeutic agent in SCI. However, the mechanism associated with HMW-HA has not been fully elucidated or tested in microglia, a similar cell type. In the current study, we sought to determine the effects of HMW-HA on TLR4 activation in microglia and to gain insights into the mechanism of action. Rat primary microglial cultures were exposed to lipopolysaccharides (LPS) and HMW-HA, and the extent and mechanisms of inflammation were studied. HMW-HA decreased LPS mediated IL-1β, IL-6, and Tumor necrosis factor-α gene expression and IL-6 and nitric oxide production. This decrease was associated with a reduction in ERK 1/2 and p38 phosphorylation, was dependent on the continued presence of HMW-HA, and activation of Akt and A20 protein expression was reduced by HMW-HA. Together, our results show that HMW-HA can reduce LPS-mediated inflammatory signaling in microglia. We suggest that HA possibly mediates its effects by blocking the induction of inflammatory signaling through an extracellular mechanism.

0 Bookmarks
 · 
64 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Injury to the CNS typically results in significant morbidity and endogenous repair mechanisms are limited in their ability to restore fully functional CNS tissue. Biologic scaffolds composed of individual purified components have been shown to facilitate functional tissue reconstruction following CNS injury. Extracellular matrix scaffolds derived from mammalian tissues retain a number of bioactive molecules and their ability for CNS repair has recently been recognized. In addition, novel biomaterials for dural mater repairs are of clinical interest as the dura provides barrier function and maintains homeostasis to CNS. The present article describes the application of regenerative medicine principles to the CNS tissues and dural mater repair. While many approaches have been exploring the use of cells and/or therapeutic molecules, the strategies described herein focus upon the use of extracellular matrix scaffolds derived from mammalian tissues that are free of cells and exogenous factors.
    Regenerative medicine. 05/2014; 9(3):367-83.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular matrix polysaccharide hyaluronan (HA) exerts size-dependent effects on leukocyte behavior. Low-molecular weight HA is abundant at sites of active tissue catabolism and promotes inflammation via effects on Toll-like receptor signaling. Conversely, high-molecular weight HA is prevalent in uninjured tissues and is anti-inflammatory. We propose that the ability of high-molecular weight but not low-molecular weight HA to cross-link CD44 functions as a novel form of pattern recognition that recognizes intact tissues and communicates "tissue integrity signals" that promote resolution of local immune responses.
    Immunologic Research 03/2014; · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The goals of this study were to characterize the changes to chondroitin sulfate proteoglycans and hyaluronan in lungs in the acute response to gram-negative bacterial infection, and to identify cellular components responsible for these changes. Mice were treated with intratracheal (IT) live Escherichia coli, E. coli lipopolysaccharide (LPS), or PBS. Both E. coli and LPS caused rapid selective increases in mRNA expression of versican and hyaluronan synthase (Has) isoforms 1 and 2 associated with increased immunohistochemical and histochemical staining for versican and hyaluronan in the lungs. Versican was associated with a subset of alveolar macrophages. To examine whether macrophages contribute to versican and hyaluronan accumulation, in vitro studies with primary cultures of bone marrow-derived and alveolar macrophages were performed. Unstimulated macrophages expressed very low levels of versican and hyaluronan synthase mRNA, with no detectible versican protein or hyaluronan product. Stimulation with LPS caused rapid increases in versican mRNA and protein, a rapid increase in Has1 mRNA, and concomitant inhibition of hyaluronidases 1 and 2, the major hyaluronan degrading enzymes. Hyaluronan could be detected following chloroquine pre-treatment, indicating rapid turnover and degradation of hyaluronan by macrophages. In addition, the effects of LPS, the M1 macrophage classical activation agonist, were compared to those of IL-4/IL-13 or IL-10, the M2a and M2c alternative activation agonists, respectively. Versican and Has1 increased only in response to M1 activation. Finally, the up-regulation of versican and Has1 in the whole lungs of wild-type mice following IT LPS was completely abrogated in TLR-4(-/-) mice. These findings suggest that versican and hyaluronan synthesis may play an important role in the innate immune response to gram-negative lung infection.
    Matrix biology: journal of the International Society for Matrix Biology 01/2014; · 3.56 Impact Factor

Full-text

View
0 Downloads