High molecular weight hyaluronan reduces lipopolysaccharide mediated microglial activation

Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada Department of Surgery, University of Toronto, Toronto, Ontario, Canada Division of Genetics and Development, Toronto Western Research Institute and Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
Journal of Neurochemistry (Impact Factor: 4.28). 05/2012; 122(2). DOI: 10.1111/j.1471-4159.2012.07789.x
Source: PubMed


J. Neurochem. (2012) 122, 344–355.
Toll-like receptor-4 (TLR4) signaling has been implicated in microglial activation and propagation of inflammation following spinal cord injury (SCI). As such, modulating microglial activation through TLR4 represents an attractive therapeutic approach to treat SCI. High molecular weight hyaluronan (HMW-HA), a polymer with multiple therapeutic uses, has been previously shown to modulate TLR4 activation in macrophages and has shown early promise as a therapeutic agent in SCI. However, the mechanism associated with HMW-HA has not been fully elucidated or tested in microglia, a similar cell type. In the current study, we sought to determine the effects of HMW-HA on TLR4 activation in microglia and to gain insights into the mechanism of action. Rat primary microglial cultures were exposed to lipopolysaccharides (LPS) and HMW-HA, and the extent and mechanisms of inflammation were studied. HMW-HA decreased LPS mediated IL-1β, IL-6, and Tumor necrosis factor-α gene expression and IL-6 and nitric oxide production. This decrease was associated with a reduction in ERK 1/2 and p38 phosphorylation, was dependent on the continued presence of HMW-HA, and activation of Akt and A20 protein expression was reduced by HMW-HA. Together, our results show that HMW-HA can reduce LPS-mediated inflammatory signaling in microglia. We suggest that HA possibly mediates its effects by blocking the induction of inflammatory signaling through an extracellular mechanism.

Download full-text


Available from: Michael G Fehlings, Apr 09, 2015
  • Source
    • "Implantation of a degradationresistant HMW-HA hydrogel into a rat dorsal hemisection lesion reduced macrophage/microglial density, gliosis, and CSPG deposition within the first week post-injury (Khaing et al., 2011). In a separate study, Austin et al. (2012) injected hydrogel containing HMW-HA/ methyl cellulose intrathecally 24 h after a spinal compression injury. This treatment decreased lesion size, reactive gliosis, and IL-1α levels, and improved locomotor recovery. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Throughout the body, the extracellular matrix (ECM) provides structure and organization to tissues and also helps regulate cell migration and intercellular communication. In the injured spinal cord (or brain), changes in the composition and structure of the ECM undoubtedly contribute to regeneration failure. Less appreciated is how the native and injured ECM influences intraspinal inflammation and, conversely, how neuroinflammation affects the synthesis and deposition of ECM after CNS injury. In all tissues, inflammation can be initiated and propagated by ECM disruption. Molecules of ECM newly liberated by injury or inflammation include hyaluronan fragments, tenascins, and sulfated proteoglycans. These act as “damage-associated molecular patterns” or “alarmins”, i.e., endogenous proteins that trigger and subsequently amplify inflammation. Activated inflammatory cells, in turn, further damage the ECM by releasing degradative enzymes including matrix metalloproteinases (MMPs). After spinal cord injury (SCI), destabilization or alteration of the structural and chemical compositions of the ECM affects migration, communication, and survival of all cells – neural and non-neural – that are critical for spinal cord repair. By stabilizing ECM structure or modifying their ability to trigger the degradative effects of inflammation, it may be possible to create an environment that is more conducive to tissue repair and axon plasticity after SCI.
    Experimental Neurology 08/2014; 258. DOI:10.1016/j.expneurol.2013.11.020 · 4.70 Impact Factor
  • Source
    • "Has1 synthesizes a relatively high molecular weight product (Itano et al., 1999). The anti-inflammatory properties of high molecular weight hyaluronan are evidenced by its ability to decrease LPS-induced inflammation in microglial cells (Austin et al., 2012), to promote immune tolerance by augmenting regulatory T cell function cells (Bollyky et al., 2009), and to protect against lung injury in a variety of models (Lennon and Singleton, 2011). We also find that LPS induces Has2 mRNA expression by airway epithelial cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The goals of this study were to characterize the changes to chondroitin sulfate proteoglycans and hyaluronan in lungs in the acute response to gram-negative bacterial infection, and to identify cellular components responsible for these changes. Mice were treated with intratracheal (IT) live Escherichia coli, E. coli lipopolysaccharide (LPS), or PBS. Both E. coli and LPS caused rapid selective increases in mRNA expression of versican and hyaluronan synthase (Has) isoforms 1 and 2 associated with increased immunohistochemical and histochemical staining for versican and hyaluronan in the lungs. Versican was associated with a subset of alveolar macrophages. To examine whether macrophages contribute to versican and hyaluronan accumulation, in vitro studies with primary cultures of bone marrow-derived and alveolar macrophages were performed. Unstimulated macrophages expressed very low levels of versican and hyaluronan synthase mRNA, with no detectible versican protein or hyaluronan product. Stimulation with LPS caused rapid increases in versican mRNA and protein, a rapid increase in Has1 mRNA, and concomitant inhibition of hyaluronidases 1 and 2, the major hyaluronan degrading enzymes. Hyaluronan could be detected following chloroquine pre-treatment, indicating rapid turnover and degradation of hyaluronan by macrophages. In addition, the effects of LPS, the M1 macrophage classical activation agonist, were compared to those of IL-4/IL-13 or IL-10, the M2a and M2c alternative activation agonists, respectively. Versican and Has1 increased only in response to M1 activation. Finally, the up-regulation of versican and Has1 in the whole lungs of wild-type mice following IT LPS was completely abrogated in TLR-4(-/-) mice. These findings suggest that versican and hyaluronan synthesis may play an important role in the innate immune response to gram-negative lung infection.
    Matrix biology: journal of the International Society for Matrix Biology 01/2014; 35. DOI:10.1016/j.matbio.2014.01.011 · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Focal stroke is a disabling disease with lifelong sensory, motor and cognitive impairments. Given the paucity of effective clinical treatments, basic scientists are developing novel options for protection of the affected brain and regeneration of lost tissue. Tissue bioengineering and stem/progenitor cell treatments have both been individually pursued for stroke neural repair therapies, with some benefit in tissue recovery. Emerging directions in stroke neural repair approaches combine these two therapies to use biopolymers with stem/progenitor transplants to promote greater cell survival in the transplant and directed delivery of bioactive molecules to the transplanted cells and the adjacent injured tissue. In this review the background literature on a combined use of neural stem/progenitor cells encapsulated in hyaluronan gels is discussed and the way this therapeutic approach can affect the important processes involved in brain tissue reconstruction, such as angiogenesis, axon regeneration, neural differentiation and inflammation is clarified. The glycosaminoglycan hyaluronan can optimize those processes and be employed in a successful neural tissue engineering approach.
    Biomatter 01/2013; 3(1). DOI:10.4161/biom.23863
Show more