Theoretical and experimental study of optical second harmonic generation in new chiral thiolates salts

Chemical Physics (Impact Factor: 1.96). 11/2006; 330:387 - 393. DOI: 10.1016/j.chemphys.2006.09.008

ABSTRACT The second harmonic generation ability of new chiral thiolate salts is investigated. Aromatic thiolate anions ArS− are expected from semi-empirical calculations with PM3 parameterization of the MNDO Hamiltonian to possess higher intrinsic polarizabilities than the parent neutral thiols ArSH. Salts associating (hyper)polarizable aromatic thiolate anions with chiral cations, which ensure the noncentrosymmetry necessary to have second-order nonlinear optical effects have been synthesized. The first hyperpolarizabilities, β, of the salts are measured using hyper-Rayleigh scattering technique. Second harmonic generation powder tests (Kurtz and Perry method) carried out on various salts studied, were positive indicating that these materials crystallize in noncentrosymmetric space groups.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Single crystals of (2E,6E)-2-(4-fluorobenzylidine)-6-(4-methoxybenzylidine)cyclohexanone (FBMBC) have been grown by a slow evaporation solution growth technique from ethanol at room temperature. The single crystal X-ray diffraction study reveals that the FBMBC belongs to triclinic system and the cell parameters are a=9.790(6) Å, b=12.08(7) Å, c=14.09(9) Å and V=1577 Å3. The structure and the crystallinity of the material were further confirmed by powder X-ray diffraction analysis. The various functional groups present in the molecule are confirmed by Fourier transform infrared spectral analysis. The scanning electron microscopy study reveals the surface morphology of the as-grown crystal. Thermogravimetric/differential thermal analysis studies reveal the purity of the material and the crystals are transparent in the visible region having a low optical cut-off at ∼475 nm. The second harmonic generation efficiency of FBMBC is estimated by the Kurtz and Perry technique. Theoretical calculations were performed using the Hartree–Fock method with 6-31 G(d,p) as the basis set to derive the optimized geometry and the first-order molecular hyperpolarizability (β) values.
    Physica B Condensed Matter 06/2013; 419:95–99. · 1.28 Impact Factor