Article

Inhibiting CXCR3-Dependent CD8+ T Cell Trafficking Enhances Tolerance Induction in a Mouse Model of Lung Rejection

Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
The Journal of Immunology (Impact Factor: 5.52). 06/2011; DOI: 10.4049/jimmunol.1001049
Source: PubMed

ABSTRACT Lung transplantation remains the only effective therapy for patients with end-stage pulmonary diseases. Unfortunately, acute rejection of the lung remains a frequent complication and is an important cause of morbidity and mortality. The induction of transplant tolerance is thought to be dependent, in part, on the balance between allograft effector mechanisms mediated by effector T lymphocytes (Teff), and regulatory mechanisms mediated by FOXP3(+) regulatory T cells (Treg). In this study, we explored an approach to tip the balance in favor of regulatory mechanisms by modulating chemokine activity. We demonstrate in an adoptive transfer model of lung rejection that CXCR3-deficient CD8(+) Teff have impaired migration into the lungs compared with wild-type Teff, which results in a dramatic reduction in fatal pulmonary inflammation. The lungs of surviving mice contained tolerized CXCR3-deficient Teff, as well as a large increase in Treg. We confirmed that Treg were needed for tolerance and that their ability to induce tolerance was dependent on their numbers in the lung relative to the numbers of Teff. These data suggest that transplantation tolerance can be achieved by reducing the recruitment of some, but not necessarily all, CD8(+) Teff into the target organ and suggest a novel approach to achieve transplant tolerance.

0 Bookmarks
 · 
53 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Induction of endogenous regulatory T (Treg) cells represents an exciting new potential modality for treating allergic diseases, such as asthma. Treg cells have been implicated in the regulation of asthma, but the anatomic location in which they exert their regulatory function and the mechanisms controlling the migration necessary for their suppressive function in asthma are not known. Understanding these aspects of Treg cell biology will be important for harnessing their power in the clinic. OBJECTIVE: We sought to determine the anatomic location at which Treg cells exert their regulatory function in the sensitization and effector phases of allergic asthma and to determine the chemokine receptors that control the migration of Treg cells to these sites in vivo in both mice and human subjects. METHODS: The clinical efficacy and anatomic location of adoptively transferred chemokine receptor-deficient CD4(+)CD25(+) forkhead box protein 3-positive Treg cells was determined in the sensitization and effector phases of allergic airway inflammation in mice. The chemokine receptor expression profile was determined on Treg cells recruited into the human airway after bronchoscopic segmental allergen challenge of asthmatic patients. RESULTS: We show that CCR7, but not CCR4, is required on Treg cells to suppress allergic airway inflammation during the sensitization phase. In contrast, CCR4, but not CCR7, is required on Treg cells to suppress allergic airway inflammation during the effector phase. Consistent with our murine studies, human subjects with allergic asthma had an increase in CCR4-expressing functional Treg cells in the lungs after segmental allergen challenge. CONCLUSION: The location of Treg cell function differs during allergic sensitization and allergen-induced recall responses in the lung, and this differential localization is critically dependent on differential chemokine function.
    The Journal of allergy and clinical immunology 04/2013; · 12.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Chemokine (C-X-C motif) receptor 3 (CXCR3) is a chemokine receptor involved in the regulation of immune cell trafficking and activation. We observed increased CXCR3 expression in the visceral adipose of obese humans and mice. We hypothesized a pathophysiologic role for CXCR3 in diet-induced obesity (DIO). Design and Methods: Wild type C57B/L6J (WT) and chemokine receptor 3 knockout (CXCR3(-/-) ) mice were fed a high fat diet (HFD) for 20 weeks followed by assessment of glucose metabolism and VAT inflammation. Results: CXCR3(-/-) mice exhibited lower fasting glucose and improved glucose tolerance compared to WT-HFD mice, despite similar body mass. HFD-induced VAT innate and adaptive immune cell infiltration, including immature myeloid cells (CD11b(+) F4/80(lo) Ly6C(+) ), was markedly ameliorated in CXCR3(-/-) mice. In vitro IBIDI and in vivo migration assays demonstrated no CXCR3-mediated effect on macrophage or monocyte migration, respectively. CXCR3(-/-) macrophages, however, had a blunted response to interferon-γ, a TH 1 cytokine that induces macrophage activation. Conclusions: We demonstrate a previously unreported role for CXCR3 in the development of HFD-induced insulin resistance and VAT macrophage infiltration in mice. Our results support pharmaceutical targeting of the CXCR3 receptor as a potential treatment for obesity/insulin resistance.
    Obesity 10/2013; · 3.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute rejection, a common complication of lung transplantation, may promote obliterative bronchiolitis leading to graft failure in lung transplant recipients. During acute rejection episodes, CD8(+) T cells can contribute to lung epithelial injury but the mechanisms promoting and controlling CD8-mediated injury in the lung are not well understood. To study the mechanisms regulating CD8(+) T cell-mediated lung rejection, we used a transgenic model in which adoptively transferred ovalbumin (OVA)-specific cytotoxic T lymphocytes (CTL) induce lung injury in mice expressing an ovalbumin transgene in the small airway epithelium of the lungs (CC10-OVA mice). The lung pathology is similar to findings in humans with acute lung transplant. In the presence of an intact immune response the inflammation resolves by day 30. Using CC10-OVA.RAG(-/-) mice, we found that CD4(+) T cells and ICOS(+/+) T cells were required for protection against lethal lung injury, while neutrophil depletion was not protective. In addition, CD4(+)Foxp3 (+) ICOS(+) T cells were enriched in the lungs of animals surviving lung injury and ICOS(+/+) Tregs promoted survival in animals that received ICOS(-/-) T cells. Direct comparison of ICOS(-/-) Tregs to ICOS(+/+) Tregs found defects in vitro but no differences in the ability of ICOS(-/-) Tregs to protect from lethal lung injury. These data suggest that ICOS affects Treg development but is not necessarily required for Treg effector function.
    PLoS ONE 01/2013; 8(8):e72955. · 3.73 Impact Factor

Full-text (2 Sources)

View
18 Downloads
Available from
May 21, 2014