Inhibiting CXCR3-Dependent CD8+ T Cell Trafficking Enhances Tolerance Induction in a Mouse Model of Lung Rejection

Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
The Journal of Immunology (Impact Factor: 4.92). 06/2011; 186(12). DOI: 10.4049/jimmunol.1001049
Source: PubMed

ABSTRACT Lung transplantation remains the only effective therapy for patients with end-stage pulmonary diseases. Unfortunately, acute rejection of the lung remains a frequent complication and is an important cause of morbidity and mortality. The induction of transplant tolerance is thought to be dependent, in part, on the balance between allograft effector mechanisms mediated by effector T lymphocytes (Teff), and regulatory mechanisms mediated by FOXP3(+) regulatory T cells (Treg). In this study, we explored an approach to tip the balance in favor of regulatory mechanisms by modulating chemokine activity. We demonstrate in an adoptive transfer model of lung rejection that CXCR3-deficient CD8(+) Teff have impaired migration into the lungs compared with wild-type Teff, which results in a dramatic reduction in fatal pulmonary inflammation. The lungs of surviving mice contained tolerized CXCR3-deficient Teff, as well as a large increase in Treg. We confirmed that Treg were needed for tolerance and that their ability to induce tolerance was dependent on their numbers in the lung relative to the numbers of Teff. These data suggest that transplantation tolerance can be achieved by reducing the recruitment of some, but not necessarily all, CD8(+) Teff into the target organ and suggest a novel approach to achieve transplant tolerance.

Download full-text


Available from: Tim D Sparwasser, Sep 28, 2015
12 Reads
  • Source
    • "As previously shown, CC10-OVA mice adoptively transferred with 5x105 activated OT-I CTL die within 6 days due to severe lung injury, while transfer of a lower amount of OT-I cells (1x105) decreases mortality (Figure 1) [32,36]. As the mice receiving 1x105 OT-I cells still had significant mortality with only 40% surviving, we wanted to develop a model where lung injury was induced but the majority of mice survived. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute rejection, a common complication of lung transplantation, may promote obliterative bronchiolitis leading to graft failure in lung transplant recipients. During acute rejection episodes, CD8(+) T cells can contribute to lung epithelial injury but the mechanisms promoting and controlling CD8-mediated injury in the lung are not well understood. To study the mechanisms regulating CD8(+) T cell-mediated lung rejection, we used a transgenic model in which adoptively transferred ovalbumin (OVA)-specific cytotoxic T lymphocytes (CTL) induce lung injury in mice expressing an ovalbumin transgene in the small airway epithelium of the lungs (CC10-OVA mice). The lung pathology is similar to findings in humans with acute lung transplant. In the presence of an intact immune response the inflammation resolves by day 30. Using CC10-OVA.RAG(-/-) mice, we found that CD4(+) T cells and ICOS(+/+) T cells were required for protection against lethal lung injury, while neutrophil depletion was not protective. In addition, CD4(+)Foxp3 (+) ICOS(+) T cells were enriched in the lungs of animals surviving lung injury and ICOS(+/+) Tregs promoted survival in animals that received ICOS(-/-) T cells. Direct comparison of ICOS(-/-) Tregs to ICOS(+/+) Tregs found defects in vitro but no differences in the ability of ICOS(-/-) Tregs to protect from lethal lung injury. These data suggest that ICOS affects Treg development but is not necessarily required for Treg effector function.
    PLoS ONE 08/2013; 8(8):e72955. DOI:10.1371/journal.pone.0072955 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the effects of chronically inhaled particulate matter <2.5 μm (PM(2.5)) on inflammatory cell populations in the lung and systemic circulation. A prominent component of air pollution exposure is a systemic inflammatory response that may exaggerate chronic diseases such as atherosclerosis and insulin resistance. T cell response was measured in wild-type C57B/L6, Foxp3-green fluorescent protein (GFP) "knockin," and chemokine receptor 3 knockout (CXCR3(-/-)) mice following 24-28 wk of PM(2.5) or filtered air. Chronic PM(2.5) exposure resulted in increased CXCR3-expressing CD4(+) and CD8(+) T cells in the lungs, spleen, and blood with elevation in CD11c(+) macrophages in the lung and oxidized derivatives of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine in wild-type mice. CXCR3 deficiency decreased T cells in the lung. GFP(+) regulatory T cells increased with PM(2.5) exposure in the spleen and blood of Foxp3-GFP mice but were present at very low levels in the lung irrespective of PM(2.5) exposure. Mixed lymphocyte cultures using primary, PM(2.5)-treated macrophages demonstrated enhanced T cell proliferation. Our experiments indicate that PM(2.5) potentiates a proinflammatory Th1 response involving increased homing of CXCR3(+) T effector cells to the lung and modulation of systemic T cell populations.
    AJP Lung Cellular and Molecular Physiology 12/2011; 302(4):L399-409. DOI:10.1152/ajplung.00261.2011 · 4.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Influenza is a major cause of morbidity and mortality in the United States. Studies have shown that excessive T cell activity can mediate pneumonitis in the setting of influenza infection, and data from the 2009 H1N1 pandemic indicate that critical illness and respiratory failure postinfection were associated with greater infiltration of the lungs with CD8(+) T cells. T cell Ig and mucin domain 3 (Tim3) is a negative regulator of Th1/Tc1-type immune responses. Activation of Tim3 on effector T cells has been shown to downregulate proliferation, cell-mediated cytotoxicity, and IFN-γ production, as well as induce apoptosis. In this article, we demonstrate that deletion of the terminal cytoplasmic domain of the Tim3 gene potentiates its ability to downregulate Tc1 inflammation, and that this enhanced Tim3 activity is associated with decreased phosphorylation of the TCR-CD3ζ-chain. We then show that mice with this Tim3 mutation infected with influenza are protected from morbidity and mortality without impairment in viral clearance or functional heterotypic immunity. This protection is associated with decreased CD8(+) T cell proliferation and decreased production of inflammatory cytokines, including IFN-γ. Furthermore, the Tim3 mutation was protective against mortality in a CD8(+) T cell-specific model of pneumonitis. These data suggest that Tim3 could be targeted to prevent immunopathology during influenza infection and demonstrate a potentially novel signaling mechanism used by Tim3 to downregulate the Tc1 response.
    The Journal of Immunology 08/2012; 189(6):2879-89. DOI:10.4049/jimmunol.1102483 · 4.92 Impact Factor
Show more