Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes.

Center of Mitochondrial Diseases, Case Western Reserve University, Cleveland, Ohio, USA.
Diabetes (Impact Factor: 7.9). 05/2012; 61(8):2074-83. DOI: 10.2337/db11-1437
Source: PubMed

ABSTRACT Mitochondrial reactive oxygen species (ROS) cause kidney damage in diabetes. We investigated the source and site of ROS production by kidney cortical tubule mitochondria in streptozotocin-induced type 1 diabetes in rats. In diabetic mitochondria, the increased amounts and activities of selective fatty acid oxidation enzymes is associated with increased oxidative phosphorylation and net ROS production with fatty acid substrates (by 40% and 30%, respectively), whereas pyruvate oxidation is decreased and pyruvate-supported ROS production is unchanged. Oxidation of substrates that donate electrons at specific sites in the electron transport chain (ETC) is unchanged. The increased maximal production of ROS with fatty acid oxidation is not affected by limiting the electron flow from complex I into complex III. The maximal capacity of the ubiquinol oxidation site in complex III in generating ROS does not differ between the control and diabetic mitochondria. In conclusion, the mitochondrial ETC is neither the target nor the site of ROS production in kidney tubule mitochondria in short-term diabetes. Mitochondrial fatty acid oxidation is the source of the increased net ROS production, and the site of electron leakage is located proximal to coenzyme Q at the electron transfer flavoprotein that shuttles electrons from acyl-CoA dehydrogenases to coenzyme Q.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control) drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1) and mitofusin 2 (MFN2) were increased, and mitochondrial fission as dynamin related protein 1 (DRP1) was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER). The level of uncoupling protein-1 (UCP1) was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes.
    European journal of histochemistry: EJH 07/2014; 58(3):2377. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic arsenicosis induced by excessive arsenic intake can cause the damages to multi-organ systems, skin cancer and various internal cancers. However, the key metabolic changes and biomarkers which can reflect these changes remain unclear resulting in a lack of effective prevention and treatments. The aim of this study is to determine the impact of chronic arsenic exposure on metabolism of organism, and find the metabolites changes by using metabolomic techniques. Thirty male Wistar rats were randomly divided into three groups. The arsenite was administered in water, and the doses were 0, 10, and 50mg/L, respectively. The exposure lasted for 6 months. The endogenous metabolite profile of serum was investigated by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Partial least squares Discriminant Analysis (PLS-DA) enabled clusters to be visualized. Nine serum principal metabolites contributing to the clusters were identified, which were CPA (18:2(9Z,12Z)/0:0), LysoPC (14:0), LysoPC (18:4 (6Z,9Z,12Z,15Z)), LysoPC (P-18:0), L-Palmitoylcarnitine, LysoPC (20:2(11Z,14Z)) in positive ESI mode and Deoxygcholylglycine, LysoPE (0:0/20:2(11Z,14Z)), 15(S)-Hydroxyeicosatrienoic acid in negative ESI. These changes of metabolites in rats suggested the changed metabolism in rats exposed to arsenic. These findings may further aid diagnose and serve as targets for therapeutic intervention of arsenicosis.
    Toxicology Letters 06/2014; · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS) and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH), respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.
    Journal of diabetes research. 01/2014; 2014:137919.

Full-text (2 Sources)

Available from
Jun 1, 2014