Oxidation of Fatty Acids Is the Source of Increased Mitochondrial Reactive Oxygen Species Production in Kidney Cortical Tubules in Early Diabetes

Center of Mitochondrial Diseases, Case Western Reserve University, Cleveland, Ohio, USA.
Diabetes (Impact Factor: 8.1). 05/2012; 61(8):2074-83. DOI: 10.2337/db11-1437
Source: PubMed


Mitochondrial reactive oxygen species (ROS) cause kidney damage in diabetes. We investigated the source and site of ROS production by kidney cortical tubule mitochondria in streptozotocin-induced type 1 diabetes in rats. In diabetic mitochondria, the increased amounts and activities of selective fatty acid oxidation enzymes is associated with increased oxidative phosphorylation and net ROS production with fatty acid substrates (by 40% and 30%, respectively), whereas pyruvate oxidation is decreased and pyruvate-supported ROS production is unchanged. Oxidation of substrates that donate electrons at specific sites in the electron transport chain (ETC) is unchanged. The increased maximal production of ROS with fatty acid oxidation is not affected by limiting the electron flow from complex I into complex III. The maximal capacity of the ubiquinol oxidation site in complex III in generating ROS does not differ between the control and diabetic mitochondria. In conclusion, the mitochondrial ETC is neither the target nor the site of ROS production in kidney tubule mitochondria in short-term diabetes. Mitochondrial fatty acid oxidation is the source of the increased net ROS production, and the site of electron leakage is located proximal to coenzyme Q at the electron transfer flavoprotein that shuttles electrons from acyl-CoA dehydrogenases to coenzyme Q.

Download full-text


Available from: Timothy Kern, Feb 01, 2014
  • Source
    • "Figure 4 summarizes schematically the pathways discussed in this review and their pathogenic roles in chronic hyperglycemia via NADH, ROS, and oxidative stress. As hyperglycemia results in excessive production of acetyl-CoA that feeds into the Krebs cycle, making excess NADH, mitochondrial electron transport chain is thus under heavy electron pressure [40, 60, 61]. Therefore, oxidation of the overproduced NADH by mitochondria will inevitably lead to production of more superoxide and hence more ROS [187, 188], which can in turn attack and inactivate GAPDH. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS) and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH), respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.
    Journal of Diabetes Research 06/2014; 2014(4):137919. DOI:10.1155/2014/137919 · 2.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, mitochondria have been suggested to act in tumor suppression. However, the underlying mechanisms by which mitochondria suppress tumorigenesis are far from being clear. In this study, we have investigated the link between mitochondrial dysfunction and the tumor suppressor protein p53 using a set of respiration-deficient (Res(-)) mammalian cell mutants with impaired assembly of the oxidative phosphorylation machinery. Our data suggest that normal mitochondrial function is required for γ-irradiation (γIR)-induced cell death, which is mainly a p53-dependent process. The Res(-) cells are protected against γIR-induced cell death due to impaired p53 expression/function. We find that the loss of complex I biogenesis in the absence of the MWFE subunit reduces the steady-state level of the p53 protein, although there is no effect on the p53 protein level in the absence of the ESSS subunit that is also essential for complex I assembly. The p53 protein level was also reduced to undetectable levels in Res(-) cells with severely impaired mitochondrial protein synthesis. This suggests that p53 protein expression is differentially regulated depending upon the type of electron transport chain/respiratory chain deficiency. Moreover, irrespective of the differences in the p53 protein expression profile, γIR-induced p53 activity is compromised in all Res(-) cells. Using two different conditional systems for complex I assembly, we also show that the effect of mitochondrial dysfunction on p53 expression/function is a reversible phenomenon. We believe that these findings will have major implications in the understanding of cancer development and therapy.
    Journal of Biological Chemistry 06/2011; 286(23):20297-312. DOI:10.1074/jbc.M110.163063 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen receptors are localized in mitochondria, but their functions in this organelle remain unclear. We previously found that ERα interacted with mitochondrial protein HADHB and affected the thiolytic cleavage activity of HADHB in β-oxidation. It is known that ERβ binds to ERα. In addition, ERβ is predominately located in mitochondria. These facts led us to speculate that ERβ may also be associated with HADHB in mitochondria. In order to test this hypothesis, we performed co-immunoprecipitation and confocal microscopy analyses with human breast cancer MCF7 cells. The results demonstrated that ERβ was indeed associated and colocalized with HADHB within mitochondria. Interestingly, in contrast to the stimulatory effect of ERα on HADHB enzyme activity observed in the previous study, silencing of ERβ enhanced the enzyme activity of HADHB in the present study, suggesting that ERβ plays an inhibitory role in HADHB enzyme activity in the breast cancer cells. Our results imply that ERα and ERβ may differentially affect cellular oxidative stress through influencing the rate of β-oxidation of fatty acids in breast cancer cells.
    Biochemical and Biophysical Research Communications 09/2012; 427(2). DOI:10.1016/j.bbrc.2012.09.047 · 2.30 Impact Factor
Show more