Article

Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy

Department of Pediatrics, University of California, San Francisco, CA 94143, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2012; 109(22):8710-5. DOI: 10.1073/pnas.1117255109
Source: PubMed

ABSTRACT Although malignant astrocytomas are a leading cause of cancer-related death in children, rational therapeutic strategies are lacking. We previously identified activating mutations of v-raf murine sarcoma viral oncogene homolog B1 (BRAF) (BRAF(T1799A) encoding BRAF(V600E)) in association with homozygous cyclin-dependent kinase inhibitor 2A (CDKN2A, encoding p14ARF and p16Ink4a) deletions in pediatric infiltrative astrocytomas. Here we report that BRAF(V600E) expression in neural progenitors (NPs) is insufficient for tumorigenesis and increases NP cellular differentiation as well as apoptosis. In contrast, astrocytomas are readily generated from NPs with additional Ink4a-Arf deletion. The BRAF(V600E) inhibitor PLX4720 significantly increased survival of mice after intracranial transplant of genetically relevant murine or human astrocytoma cells. Moreover, combination therapy using PLX4720 plus the Cyclin-dependent kinase (CDK) 4/6-specific inhibitor PD0332991 further extended survival relative to either monotherapy. Our findings indicate a rational therapeutic strategy for treating a subset of pediatric astrocytomas with BRAF(V600E) mutation and CDKN2A deficiency.

0 Followers
 · 
124 Views
  • Neurosurgery 10/2012; 71(4):N7. DOI:10.1227/NEU.0b013e3181ae7e28 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: World Health Organization (WHO) grade I astrocytomas include pilocytic astrocytoma (PA) and subependymal giant cell astrocytoma (SEGA). As technologies in pharmacologic neo-adjuvant therapy continue to progress and as molecular characteristics are progressively recognized as potential markers of both clinically significant tumor subtypes and response to therapy, interest in the biology of these tumors has surged. An updated review of the current knowledge of the molecular biology of these tumors is needed. We conducted a Medline search to identify published literature discussing the molecular biology of grade I astrocytomas. We then summarized this literature and discuss it in a logical framework through which the complex biology of these tumors can be clearly understood. A comprehensive review of the molecular biology of WHO grade I astrocytomas is presented. The past several years have seen rapid progress in the level of understanding of PA in particular, but the molecular literature regarding both PA and SEGA remains nebulous, ambiguous, and occasionally contradictory. In this review we provide a comprehensive discussion of the current understanding of the chromosomal, genomic, and epigenomic features of both PA and SEGA and provide a logical framework in which these data can be more readily understood.
    Neuro-Oncology 10/2012; 14. DOI:10.1093/neuonc/nos257 · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The deregulation of the cell cycle and checkpoint machinery in cancer presents a highly attractive therapeutic strategy. We review here the strategies used to exploit the dysregulated cell cycle, both through targeting kinases required for cell cycle progression, and checkpoint kinases to inappropriately force cells through the cell cycle. Appropriate control of the cell cycle is critical for proliferating normal cells, and we discuss the importance of defining tumour specific vulnerabilities that could be targeted with cell cycle kinase inhibitors. Recent studies have shown that ER-positive breast cancers rely on CDK4 to promote proliferation. TP53 mutant cancer cell lines are sensitive to WEE1 and CHK1 inhibitors in combination with chemotherapy, while PTEN-deficient aneuploid cancer cell lines are sensitive to TTK inhibitors.
    Current Opinion in Pharmacology 04/2013; 13(4). DOI:10.1016/j.coph.2013.03.012 · 4.23 Impact Factor
Show more