Dispersal will limit ability of mammals to track climate change in the Western Hemisphere.

School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.74). 05/2012; 109(22):8606-11. DOI:10.1073/pnas.1116791109
Source: PubMed

ABSTRACT As they have in response to past climatic changes, many species will shift their distributions in response to modern climate change. However, due to the unprecedented rapidity of projected climatic changes, some species may not be able to move their ranges fast enough to track shifts in suitable climates and associated habitats. Here, we investigate the ability of 493 mammals to keep pace with projected climatic changes in the Western Hemisphere. We modeled the velocities at which species will likely need to move to keep pace with projected changes in suitable climates. We compared these velocities with the velocities at which species are able to move as a function of dispersal distances and dispersal frequencies. Across the Western Hemisphere, on average, 9.2% of mammals at a given location will likely be unable to keep pace with climate change. In some places, up to 39% of mammals may be unable to track shifts in suitable climates. Eighty-seven percent of mammalian species are expected to experience reductions in range size and 20% of these range reductions will likely be due to limited dispersal abilities as opposed to reductions in the area of suitable climate. Because climate change will likely outpace the response capacity of many mammals, mammalian vulnerability to climate change may be more extensive than previously anticipated.

1 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Model predictions of extinction risks from anthropogenic climate change are dire, but still overly simplistic. To reliably predict at-risk species we need to know which species are currently responding, which are not, and what traits are mediating the responses. For mammals, we have yet to identify overarching physiological, behavioral, or biogeographic traits determining species' responses to climate change, but they must exist. To date, 73 mammal species in North America and eight additional species worldwide have been assessed for responses to climate change, including local extirpations, range contractions and shifts, decreased abundance, phenological shifts, morphological or genetic changes. Only 52% of those species have responded as expected, 7% responded opposite to expectations, and the remaining 41% have not responded. Which mammals are and are not responding to climate change is mediated predominantly by body size and activity times (phylogenetic multivariate logistic regressions, P < 0.0001). Large mammals respond more, for example, an elk is 27 times more likely to respond to climate change than a shrew. Obligate diurnal and nocturnal mammals are more than twice as likely to respond as mammals with flexible activity times (P < 0.0001). Among the other traits examined, species with higher latitudinal and elevational ranges were more likely to respond to climate change in some analyses, whereas hibernation, heterothermy, burrowing, nesting, and study location did not influence responses. These results indicate that some mammal species can behaviorally escape climate change whereas others cannot, analogous to paleontology's climate sheltering hypothesis. Including body size and activity flexibility traits into future extinction risk forecasts should substantially improve their predictive utility for conservation and management.
    Global Change Biology 01/2014; · 6.91 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made.
    Evolutionary Applications 01/2014; 7(1):29-41. · 4.15 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Characterising patterns of animal movement is a major aim in population ecology, and yet doing so at an appropriate spatial-scale remains a major challenge. Estimating the frequency and distances of movements are of particular importance when species are implicated in the transmission of zoonotic diseases. European badgers (Meles meles) are classically viewed as exhibiting limited dispersal, and yet their movements bring them into conflict with farmers due to their potential to spread bovine tuberculosis in parts of their range. Considerable uncertainty surrounds the movement potential of badgers, and this may be related to the spatial-scale of previous empirical studies. We conducted a large-scale mark-recapture study on badgers (755km(2) ; 2008-2012; 1,935 capture-events; 963 badgers) to investigate movement patterns in badgers, and undertook a comparative meta-analysis using published data from 15 European populations. The dispersal movement (>1km) kernel followed an inverse power-law function, with a substantial 'tail' indicating the occurrence of rare long-distance dispersal attempts during the study period. The mean recorded distance from this distribution was 2.6km., the upper 95%ile was 7.3km and the longest recorded was 22.1km. Dispersal frequency distributions were significantly different between genders; males dispersed more frequently than females but females made proportionally more long-distance dispersal attempts than males. We used a subsampling approach to demonstrate that the appropriate minimum spatial-scale to characterise badger movements in our study population was 80km(2) , substantially larger than many previous badger studies. Furthermore, the meta-analysis indicated a significant association between maximum movement distance and study area size, while controlling for population density. Maximum long-distance movements were often only recorded by chance beyond the boundaries of study areas. These findings suggest that the tail of the badger movement distribution is currently underestimated. The implications of this for understanding the spatial-ecology of badger populations and for the design of disease intervention strategies are potentially significant. This article is protected by copyright. All rights reserved.
    Journal of Animal Ecology 01/2014; · 4.84 Impact Factor

Full-text (2 Sources)

Available from
Sep 3, 2013