Article

Reduced fractional anisotropy in the uncinate fasciculus in patients with major depression carrying the met-allele of the Val66Met brain-derived neurotrophic factor genotype.

Department of Psychiatry, Institute of Neuroscience, University of Dublin, Trinity College Dublin, Dublin, Ireland.
American Journal of Medical Genetics Part B Neuropsychiatric Genetics (Impact Factor: 3.27). 05/2012; 159B(5):537-48. DOI: 10.1002/ajmg.b.32060
Source: PubMed

ABSTRACT Experimental studies support a neurotrophic hypothesis of major depressive disorder (MDD). The aim of this study was to determine the effect of Val66Met brain-derived neurotrophic factor (BDNF) polymorphism on the white matter fiber tracts connecting hippocampus and amygdala with the prefrontal lobe in a sample of patients with MDD and healthy controls. Thirty-seven patients with MDD and 42 healthy volunteers were recruited. Diffusion tensor imaging (DTI) data with 61 diffusion directions were obtained with MRI 3 Tesla scanner. Deterministic tractography was applied with ExploreDTI and Val66Met BDNF SNP (rs6265) was genotyped. Fiber tracts connecting the hippocampus and amygdala with the prefrontal lobe, namely uncinate fasciculus (UF), fornix, and cingulum were analyzed. A significant interaction was found in the UF between BDNF alleles and diagnosis. Patients carrying the BDNF met-allele had smaller fractional anisotropy (FA) in the UF compared to those patients homozygous for val-allele and compared to healthy subjects carrying the met-allele. A significant three-way interaction was detected between region of the cingulum (dorsal, rostral, and parahippocampal regions), brain hemisphere and BDNF genotype. Larger FA was detectable in the left rostral cingulum for met-allele carriers when compared to val/val alelle carriers. We provide evidence for the importance of the neurotrophic involvement in limbic and prefrontal connections. The met-allele of the BDNF polymorphism seems to render subjects more vulnerable for dysfunctions associated with the UF, a tract known to be related to negative emotional-cognitive processing bias, declarative memory problems, and autonoetic self awareness.

0 Bookmarks
 · 
181 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some people have much better memory than others, and there is compelling evidence that a considerable proportion of this variation in memory ability is genetically inherited. A form of synaptic plasticity known as long-term potentiation (LTP) is the principal candidate mechanism underlying memory formation in neural circuits, and it might be expected, therefore, that a genetic influence on the degree of LTP might in turn influence memory abilities. Of the genetic variations thought to significantly influence mnemonic ability in humans, the most likely to have its effect via LTP is a single nucleotide polymorphism affecting brain-derived neurotrophic factor [BDNF (Val66Met)]. However, although it is likely that BDNF influences memory via a modulation of acute plasticity (i.e., LTP), BDNF also has considerable influence on structural development of neural systems. Thus, the influence of BDNF (Val66Met) on mnemonic performance via influences of brain structure as well as function must also be considered. In this brief review, we will describe the phenomenon of LTP and its study in non-human animals. We will discuss the relatively recent attempts to translate this work to studies in humans. We will describe how this has enabled investigation of the effect of the BDNF polymorphism on LTP, on brain structure, and on memory performance.For further resources related to this article, please visit the WIREs website.Conflict of interest: The authors have declared no conflicts of interest for this article.
    Wiley interdisciplinary reviews. Cognitive science 12/2014; · 0.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Considerable evidence suggests a crucial role for the epigenetic regulation of brain-derived neurotrophic factor (BDNF) in the pathophysiology of major depressive disorder (MDD). However, the relationship between BDNF DNA methylation and white matter (WM) integrity in MDD has not yet been investigated. In the current study, we examined the association between the DNA methylation status of the BDNF promoter region and WM integrity in MDD. Sixty patients with MDD and 53 healthy controls underwent T1-weighted structural magnetic resonance imaging (MRI), including diffusion tensor imaging (DTI), to assess their WM integrity. BDNF DNA methylation at 4 CpG sites of the promoter region was also measured.As compared to healthy controls, the MDD group demonstrated reduced fractional anisotropy (FA) in the bilateral anterior and posterior corona radiata (ACR and PCR), genu of the corpus callosum, and the bilateral posterior thalamic radiations. We observed a significant inverse correlation between the DNA methylation of the BDNF promoter region and the FA of the right ACR in MDD patients.Our findings demonstrate a relationship between methylation of the BDNF promoter region and the integrity of the ACR, a key structural component of the emotional and cognitive control network involved in the pathophysiology of MDD. This correlation suggests that BDNF DNA methylation may contribute to structural WM changes in MDD patients.
    Journal of Affective Disorders 02/2015; 172. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the association between the Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene, the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene, and white matter changes in patients with major depressive disorder (MDD) and healthy subjects using diffusion tensor imaging (DTI). We studied 30 patients with MDD (17 males and 13 females, with mean age ± standard deviation [SD] =44±12 years) and 30 sex- and age-matched healthy controls (17 males and 13 females, aged 44±13 years). Using DTI analysis with a tract-based spatial statistics (TBSS) approach, we investigated the differences in fractional anisotropy, radial diffusivity, and axial diffusivity distribution among the three groups (patients with the COMT gene Val158Met, those with the BDNF gene Val66Met, and the healthy subjects). In a voxel-wise-based group comparison, we found significant decreases in fractional anisotropy and axial diffusivity within the temporal lobe white matter in the Met-carriers with MDD compared with the controls (P<0.05). No correlations in fractional anisotropy, axial diffusivity, or radial diffusivity were observed between the MDD patients and the controls, either among those with the BDNF Val/Val genotype or among the BDNF Met-carriers. These results suggest an association between the COMT gene Val158Met and the white matter abnormalities found in the temporal lobe of patients with MDD.
    Neuropsychiatric Disease and Treatment 01/2014; 10:1183-90. · 2.15 Impact Factor

Full-text

Download
7 Downloads
Available from
Sep 15, 2014