Reduced fractional anisotropy in the uncinate fasciculus in patients with major depression carrying the met-allele of the Val66Met brain-derived neurotrophic factor genotype.

Department of Psychiatry, Institute of Neuroscience, University of Dublin, Trinity College Dublin, Dublin, Ireland.
American Journal of Medical Genetics Part B Neuropsychiatric Genetics (Impact Factor: 3.23). 05/2012; 159B(5):537-48. DOI: 10.1002/ajmg.b.32060
Source: PubMed

ABSTRACT Experimental studies support a neurotrophic hypothesis of major depressive disorder (MDD). The aim of this study was to determine the effect of Val66Met brain-derived neurotrophic factor (BDNF) polymorphism on the white matter fiber tracts connecting hippocampus and amygdala with the prefrontal lobe in a sample of patients with MDD and healthy controls. Thirty-seven patients with MDD and 42 healthy volunteers were recruited. Diffusion tensor imaging (DTI) data with 61 diffusion directions were obtained with MRI 3 Tesla scanner. Deterministic tractography was applied with ExploreDTI and Val66Met BDNF SNP (rs6265) was genotyped. Fiber tracts connecting the hippocampus and amygdala with the prefrontal lobe, namely uncinate fasciculus (UF), fornix, and cingulum were analyzed. A significant interaction was found in the UF between BDNF alleles and diagnosis. Patients carrying the BDNF met-allele had smaller fractional anisotropy (FA) in the UF compared to those patients homozygous for val-allele and compared to healthy subjects carrying the met-allele. A significant three-way interaction was detected between region of the cingulum (dorsal, rostral, and parahippocampal regions), brain hemisphere and BDNF genotype. Larger FA was detectable in the left rostral cingulum for met-allele carriers when compared to val/val alelle carriers. We provide evidence for the importance of the neurotrophic involvement in limbic and prefrontal connections. The met-allele of the BDNF polymorphism seems to render subjects more vulnerable for dysfunctions associated with the UF, a tract known to be related to negative emotional-cognitive processing bias, declarative memory problems, and autonoetic self awareness.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An epistatic interaction of 5-HTTLPR and BDNF Val66Met polymorphisms has been implicated in the structure of rostral anterior cingulate cortex (rACC) and amygdala (AMY): key regions associated with emotion processing. However, a functional epistasis of 5-HTTLPR and BDNF Val66Met on overt emotion processing has yet to be determined. Twenty-eight healthy, Caucasian female participants provided saliva samples for genotyping and underwent functional magnetic resonance imaging (fMRI) during which an emotion processing protocol were presented. Confirming the validity of this protocol, we observed blood oxygen level-dependent (BOLD) activity consistent with fMRI meta-analyses on emotion processing. Region-of-interest analysis of the rACC and AMY revealed main effects of 5-HTTLPR and BDNF Val66Met, and an interaction of 5-HTTLPR and BDNF Val66Met. The effect of the BDNF Met66 allele was dependent on 5-HTTLPR alleles, such that participants with S and Met alleles had the greatest rACC and AMY activation during the presentation of emotional images relative to other genetic groupings. Increased activity in these regions was interpreted as increased reactivity to emotional stimuli, suggesting that those with S and Met alleles are more reactive to emotional stimuli relative to other groups. Although limited by a small sample, this study contributes novel and preliminary findings relating to a functional epistasis of the 5-HTTLPR and BDNF Val66Met genes in emotion processing and provides guidance on appropriate methods to determine genetic epistasis in fMRI.
    Brain and behavior. 11/2012; 2(6):778-88.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with non-central nervous system cancers often experience subtle cognitive deficits after treatment with cytotoxic agents. Therapy-induced structural changes to the brain could be one of the possible causes underlying these reported cognitive deficits. In this review, we evaluate the use of diffusion tensor imaging (DTI) for assessing possible therapy-induced changes in the microstructure of the cerebral white matter (WM) and provide a critical overview of the published DTI research on therapy-induced cognitive impairment. Both cross-sectional and longitudinal DTI studies have demonstrated abnormal microstructural properties in WM regions involved in cognition. These findings correlated with cognitive performance, suggesting that there is a link between reduced "WM integrity" and chemotherapy-induced impaired cognition. In this paper, we will also introduce the basics of diffusion tensor imaging and how it can be applied to evaluate effects of therapy on structural changes in cerebral WM. The review concludes with considerations and discussion regarding DTI data interpretation and possible future directions for investigating therapy-induced WM changes in cancer patients. This review article is part of a Special Issue entitled: Neuroimaging Studies of Cancer and Cancer Treatment.
    Brain Imaging and Behavior 01/2013; · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Hypercortisolism leads to various physical, psychological and cognitive symptoms, which may partly persist after treatment of Cushing's disease. The aim of the present study was to investigate abnormalities in white matter integrity in patients with long-term remission of Cushing's disease, and their relation with psychological symptoms, cognitive impairment and clinical characteristics. Methods In patients with long-term remission of Cushing's disease (n = 22) and matched healthy controls (n = 22) we examined fractional anisotropy (FA) values of white matter in a region-of-interest (ROI; bilateral cingulate cingulum, bilateral hippocampal cingulum, bilateral uncinate fasciculus and corpus callosum) and the whole brain, using 3 T diffusion tensor imaging (DTI) and a tract-based spatial statistics (TBSS) approach. Psychological and cognitive functioning were assessed with validated questionnaires and clinical severity was assessed using the Cushing's syndrome Severity Index. Results The ROI analysis showed FA reductions in all of the hypothesized regions, with the exception of the bilateral hippocampal cingulum, in patients when compared to controls. The exploratory whole brain analysis showed multiple regions with lower FA values throughout the brain. Patients reported more apathy (p = .003) and more depressive symptoms (p < .001), whereas depression symptom severity in the patient group was negatively associated with FA in the left uncinate fasciculus (p < 0.05). Post-hoc analyses showed increased radial and mean diffusivity in the patient group. Conclusion Patients with a history of endogenous hypercortisolism in present remission show widespread changes of white matter integrity in the brain, with abnormalities in the integrity of the uncinate fasciculus being related to severity of depressive symptoms, suggesting persistent structural effects of hypercortisolism.
    NeuroImage: Clinical. 01/2014;


Available from
Sep 15, 2014