Three-dimensional motion tracking for high-resolution optical microscopy, in vivo

Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute.
Journal of Microscopy (Impact Factor: 2.15). 06/2012; 246(3):237-47. DOI: 10.1111/j.1365-2818.2012.03613.x
Source: PubMed

ABSTRACT When conducting optical imaging experiments, in vivo, the signal to noise ratio and effective spatial and temporal resolution is fundamentally limited by physiological motion of the tissue. A three-dimensional (3D) motion tracking scheme, using a multiphoton excitation microscope with a resonant galvanometer, (512 × 512 pixels at 33 frames s(-1)) is described to overcome physiological motion, in vivo. The use of commercially available graphical processing units permitted the rapid 3D cross-correlation of sequential volumes to detect displacements and adjust tissue position to track motions in near real-time. Motion phantom tests maintained micron resolution with displacement velocities of up to 200 μm min(-1), well within the drift observed in many biological tissues under physiologically relevant conditions. In vivo experiments on mouse skeletal muscle using the capillary vasculature with luminal dye as a displacement reference revealed an effective and robust method of tracking tissue motion to enable (1) signal averaging over time without compromising resolution, and (2) tracking of cellular regions during a physiological perturbation.

1 Follower
  • Source
    • "It is therefore recommended, whenever possible, to adopt passive mechanical stabilizers in combination with their use in a synergistic effort aimed at reducing the total amount of motion [8], [24]. Alternatively motion compensation along the plane perpendicular to the optical axis has been demonstrated by controlling an XY translational stage [12] while Z motion compensation has also been achieved using an objective focus motor [25] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions.
    IEEE Journal of Selected Topics in Quantum Electronics 03/2014; 20(2). DOI:10.1109/JSTQE.2013.2279314 · 3.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. ResultsMPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria.This article is protected by copyright. All rights reserved.
    Microcirculation (New York, N.Y.: 1994) 10/2013; 21(2). DOI:10.1111/micc.12098 · 2.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe a compact, non-contact design for a total emission detection (c-TED) system for intra-vital multiphoton imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined. Tests were conducted on exposed tissues in live animals to examine the emission collection enhancement of the c-TED device compared to heavily optimized objective-based emission collection. The best light collection enhancement was seen from murine fat (5×-2× gains as a function of depth), whereas murine skeletal muscle and rat kidney showed gains of over two and just under twofold near the surface, respectively. Gains decreased with imaging depth (particularly in the kidney). Zebrafish imaging on a reflective substrate showed close to a twofold gain throughout the entire volume of an intact embryo (approximately 150 μm deep). Direct measurement of bleaching rates confirmed that the lower laser powers, enabled by greater light collection efficiency, yielded reduced photobleaching in vivo. The potential benefits of increased light collection in terms of speed of imaging and reduced photo-damage, as well as the applicability of this device to other multiphoton imaging methods is discussed.
    Journal of Microscopy 11/2013; 253(2). DOI:10.1111/jmi.12099 · 2.15 Impact Factor
Show more