Article

Cardiac side population cells: moving toward the center stage in cardiac regeneration.

Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.
Circulation Research (Impact Factor: 11.86). 05/2012; 110(10):1355-63. DOI: 10.1161/CIRCRESAHA.111.243014
Source: PubMed

ABSTRACT Over the past decade, extensive work in animal models and humans has identified the presence of adult cardiac progenitor cells, capable of cardiomyogenic differentiation and likely contributors to cardiomyocyte turnover during normal development and disease. Among cardiac progenitor cells, there is a distinct subpopulation, termed "side population" (SP) progenitor cells, identified by their unique ability to efflux DNA binding dyes through an ATP-binding cassette transporter. This review highlights the literature on the isolation, characterization, and functional relevance of cardiac SP cells. We review the initial discovery of cardiac SP cells in adult myocardium as well as their capacity for functional cardiomyogenic differentiation and role in cardiac regeneration after myocardial injury. Finally, we discuss recent advances in understanding the molecular regulators of cardiac SP cell proliferation and differentiation, as well as likely future areas of investigation required to realize the goal of effective cardiac regeneration.

0 Bookmarks
 · 
93 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significance: Heart disease is the primary cause of death in the industrialized world. Cardiac failure is dictated by an uncompensated reduction in the number of viable and fully-functional cardiomyocytes. While current pharmacological therapies alleviate the symptoms associated with cardiac deterioration, heart transplantation remains the only therapy for advanced heart failure. Therefore, there is a pressing need for novel therapeutic modalities. Cell-based therapies involving cardiac stem cells (CSCs) constitute a promising emerging approach for the replenishment of the lost tissue and the restoration of cardiac contractility. Recent Advances: CSCs reside in the adult heart and govern myocardial homeostasis and repair after injury by producing new cardiomyocytes and vascular structures. In the last decade, different classes of immature cells expressing distinct stem cell markers have been identified and characterized in terms of their growth properties, differentiation potential, and regenerative ability. Phase I clinical trials, employing autologous CSCs in patients with ischemic cardiomyopathy, are being completed with encouraging results. Critical Issues: Accumulating evidence concerning the role of CSCs in heart regeneration imposes a reconsideration of the mechanisms of cardiac aging and the etiology of heart failure. Deciphering the molecular pathways that prevent activation of CSCs in their environment and understanding the processes that affect CSC survival and regenerative function with cardiac pathologies, commonly accompanied by alterations in redox conditions, are of great clinical importance. Future Directions: Further investigations of CSC biology may be translated into highly-effective and novel therapeutic strategies aiming at the enhancement of the endogenous healing capacity of the diseased heart.
    Antioxidants & Redox Signaling 03/2014; · 8.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell alignment is a critical factor to govern cellular behavior and function for various tissue engineering applications ranging from cardiac to neural regeneration. In addition to physical geometry, strain is a crucial parameter to manipulate cellular alignment for functional tissue formation. In this paper, we introduce a simple approach to generate a range of gradient static strains without external mechanical control for the stimulation of cellular behavior within 3D biomimetic hydrogel microenvironments. A glass-supported microfluidic chip with a convex flexible polydimethylsiloxane (PDMS) membrane on the top was employed for loading the cells suspended in a prepolymer solution. Following UV crosslinking through a photomask with a concentric circular pattern, the cell-laden hydrogels were formed in a height gradient from the center (maximum) to the boundary (minimum). When the convex PDMS membrane retracted back to a flat surface, it applied compressive gradient forces on the cell-laden hydrogels. The concentric circular hydrogel patterns confined the direction of hydrogel elongation, and the compressive strain on the hydrogel therefore resulted in elongation stretch in the radial direction to guide cell alignment. NIH3T3 cells were cultured in the chip for 3 days with compressive strains that varied from ~65% (center) to ~15% (boundary) on hydrogels. We found that the hydrogel geometry dominated the cell alignment near the outside boundary, where cells aligned along the circular direction, and the compressive strain dominated the cell alignment near the center, where cells aligned radially. This study developed a new and simple approach to facilitate cellular alignment based on hydrogel geometry and strain stimulation for tissue engineering applications. This platform offers unique advantages and is significantly different from the existing approaches owing to the fact that gradient generation was accomplished in a miniature device without using an external mechanical source.
    Lab on a Chip 11/2013; · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microfabrication technology provides a highly versatile platform for engineering hydrogels used in biomedical applications with high-resolution control and injectability. Herein, we present a strategy of microfluidics-assisted fabrication photocrosslinkable gelatin microgels, coupled with providing protective silica hydrogel layer on the microgel surface to ultimately generate gelatin-silica core-shell microgels for applications as in vitro cell culture platform and injectable tissue constructs. A microfluidic device having flow-focusing channel geometry was utilized to generate droplets containing methacrylated gelatin (GelMA), followed by a photocrosslinking step to synthesize GelMA microgels. The size of the microgels could easily be controlled by varying the ratio of flow rates of aqueous and oil phases. Then, the GelMA microgels were used as in vitro cell culture platform to grow cardiac side population cells on the microgel surface. The cells readily adhered on the microgel surface and proliferated over time while maintaining high viability (~90%). The cells on the microgels were also able to migrate to their surrounding area. In addition, the microgels eventually degraded over time. These results demonstrate that cell-seeded GelMA microgels have a great potential as injectable tissue constructs. Furthermore, we demonstrated that coating the cells on GelMA microgels with biocompatible and biodegradable silica hydrogels via sol-gel method provided significant protection against oxidative stress which is often encountered during and after injection into host tissues, and detrimental to the cells. Overall, the microfluidic approach to generate cell-adhesive microgel core, coupled with silica hydrogels as a protective shell, will be highly useful as a cell culture platform to generate a wide range of injectable tissue constructs.
    Biomacromolecules 12/2013; · 5.37 Impact Factor

Full-text

View
1 Download
Available from