Article

Cardiac side population cells: moving toward the center stage in cardiac regeneration.

Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.
Circulation Research (Impact Factor: 11.86). 05/2012; 110(10):1355-63. DOI: 10.1161/CIRCRESAHA.111.243014
Source: PubMed

ABSTRACT Over the past decade, extensive work in animal models and humans has identified the presence of adult cardiac progenitor cells, capable of cardiomyogenic differentiation and likely contributors to cardiomyocyte turnover during normal development and disease. Among cardiac progenitor cells, there is a distinct subpopulation, termed "side population" (SP) progenitor cells, identified by their unique ability to efflux DNA binding dyes through an ATP-binding cassette transporter. This review highlights the literature on the isolation, characterization, and functional relevance of cardiac SP cells. We review the initial discovery of cardiac SP cells in adult myocardium as well as their capacity for functional cardiomyogenic differentiation and role in cardiac regeneration after myocardial injury. Finally, we discuss recent advances in understanding the molecular regulators of cardiac SP cell proliferation and differentiation, as well as likely future areas of investigation required to realize the goal of effective cardiac regeneration.

0 Bookmarks
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Graphene has drawn attention as a substrate for stem cell culture and has been reported to stimulate the differentiation of multipotent adult stem cells. Here, we report that graphene enhances the cardiomyogenic differentiation of human embryonic stem cells (hESCs) at least in part, due to nanoroughness of graphene. Large-area graphene on glass coverslips was prepared via the chemical vapor deposition method. The coating of the graphene with vitronectin (VN) was required to ensure high viability of the hESCs cultured on the graphene. hESCs were cultured on either VN-coated glass (glass group) or VN-coated graphene (graphene group) for 21 days. The cells were also cultured on glass coated with Matrigel (Matrigel group), which is a substrate used in conventional, directed cardiomyogenic differentiation systems. The culture of hESCs on graphene promoted the expression of genes involved in the stepwise differentiation into mesodermal and endodermal lineage cells and subsequently cardiomyogenic differentiation compared with the culture on glass or Matrigel. In addition, the culture on graphene enhanced the gene expression of cardiac-specific extracellular matrices. Culture on graphene may provide a new platform for the development of stem cell therapies for ischemic heart diseases by enhancing the cardiomyogenic differentiation of hESCs.
    Biochemical and Biophysical Research Communications 01/2014; · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite declines in heart failure morbidity and mortality with current therapies, rehospitalization rates remain distressingly high, substantially affecting individuals, society, and the economy. As a result, the need for new therapeutic advances and novel medical devices is urgent. Disease-related left ventricular remodeling is a complex process involving cardiac myocyte growth and death, vascular rarefaction, fibrosis, inflammation, and electrophysiological remodeling. Because these events are highly interrelated, targeting a single molecule or process may not be sufficient. Here, we review molecular and cellular mechanisms governing pathological ventricular remodeling.
    Circulation 07/2013; 128(4):388-400. · 15.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The concept of the heart as a terminally differentiated organ incapable of replacing damaged myocytes has been at the center of cardiovascular research and therapeutic development for the last fifty years. The progressive decline in myocyte number with aging and the formation of scarred tissue following myocardial infarction have been interpreted as irrefutable proofs of the post-mitotic characteristics of the adult heart. However, emerging evidence supports a more dynamic view of the myocardium in which cell death and cell restoration are vital components of the remodeling process that governs organ homeostasis, aging and disease. The identification of dividing myocytes throughout the life span of the organisms and the recognition that undifferentiated primitive cells regulate myocyte turnover and tissue regeneration indicate that the heart is a self-renewing organ controlled by a compartment of resident stem cells. Moreover, exogenous progenitors of bone marrow origin transdifferentiate and acquire the cardiomyocyte and vascular lineages. This new reality constitutes the foundation of the numerous cell-based clinical trials that have been conducted in the last decade for the treatment of ischemic and non-ischemic cardiomyopathies.
    Biochemical pharmacology 11/2013; · 4.25 Impact Factor

Full-text

View
1 Download
Available from