Sports Concussions and Aging: A Neuroimaging Investigation.

Centre de Recherche en Neuropsychologie et Cognition.
Cerebral Cortex (Impact Factor: 8.31). 05/2012; DOI: 10.1093/cercor/bhs102
Source: PubMed

ABSTRACT Recent epidemiological and experimental studies suggest a link between cognitive decline in late adulthood and sports concussions sustained in early adulthood. In order to provide the first in vivo neuroanatomical evidence of this relation, the present study probes the neuroimaging profile of former athletes with concussions in relation to cognition. Former athletes who sustained their last sports concussion >3 decades prior to testing were compared with those with no history of traumatic brain injury. Participants underwent quantitative neuroimaging (optimized voxel-based morphometry [VBM], hippocampal volume, and cortical thickness), proton magnetic resonance spectroscopy ((1)H MRS; medial temporal lobes and prefrontal cortices), and neuropsychological testing, and they were genotyped for APOE polymorphisms. Relative to controls, former athletes with concussions exhibited: 1) Abnormal enlargement of the lateral ventricles, 2) cortical thinning in regions more vulnerable to the aging process, 3) various neurometabolic anomalies found across regions of interest, 4) episodic memory and verbal fluency decline. The cognitive deficits correlated with neuroimaging findings in concussed participants. This study unveiled brain anomalies in otherwise healthy former athletes with concussions and associated those manifestations to the long-term detrimental effects of sports concussion on cognitive function. Findings from this study highlight patterns of decline often associated with abnormal aging.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective The purpose of this study was to summarize sport concussion incidence data, identify sports that present higher injury frequency, reveal the degree of risk in some lesser-known sports, and outline specific details within the sports literature that raise additional concerns, such as helmet-to-helmet contact and player positions that experience frequent impact. Methods A systematic literature review of Pub Med using keyword search on injury, concussion, and sports was performed through May 2012. Abstracts were identified, selections were made based upon inclusion criteria, and full-length articles were obtained. Additional articles were considered following review of reference sections. Articles were reviewed and tabulated according to sport. Results Two hundred eighty-nine articles were screened, and 62 articles were reviewed. The overall incidence of concussion in sport ranged from 0.1 to 21.5 per 1000 athletic exposures. The lowest incidence was reported in swimming and diving. Concussion incidence was highest in Canadian junior ice hockey, but elevated incidence in American football remains a concern because of the large number of participants. Conclusions The literature reviewed included incidence of concussion on the field of play under real-world conditions and influenced by the current culture of sport. The studies examined in this article show that there is risk of concussion in nearly every sport. Some sports have higher concussion frequency than others, which may depend upon the forces and roles of the positions played in these sports. Younger athletes have a higher incidence of concussion, and female incidence is greater than male in many comparable sports. Headgear may reduce concussion in some sports but may also give athletes a false sense of protection.
    Journal of chiropractic medicine 01/2013; 12(4):230–251.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To summarize the existing literature on the genetics of athletic performance, with particular consideration for the relevance to young athletes. Two gene variants, ACE I/D and ACTN3 R577X, have been consistently associated with endurance (ACE I/I) and power-related (ACTN3 R/R) performance, though neither can be considered predictive. The role of genetic variation in injury risk and outcomes is more sparsely studied, but genetic testing for injury susceptibility could be beneficial in protecting young athletes from serious injury. Little information on the association of genetic variation with athletic performance in young athletes is available; however, genetic testing is becoming more popular as a means of talent identification. Despite this increase in the use of such testing, evidence is lacking for the usefulness of genetic testing over traditional talent selection techniques in predicting athletic ability, and careful consideration should be given to the ethical issues surrounding such testing in children. A favorable genetic profile, when combined with an optimal training environment, is important for elite athletic performance; however, few genes are consistently associated with elite athletic performance, and none are linked strongly enough to warrant their use in predicting athletic success.
    Current opinion in pediatrics 12/2013; 25(6):653-8. · 2.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nearly two million people suffer traumatic brain injury in the US each year. These injuries alter adversely the metabolism of myelin, a major lipid material in brain, both in people and in experimental injuries of animals. A newly discovered and severe human neuropathy from copper deficiency provides evidence that some people in the US are malnourished in copper. As it is well known among copper cognoscenti that it is impossible to synthesize myelin if copper nutriture is inadequate, it seems reasonable to assume that repair will be poor in this situation. Copper status of patients should be evaluated and experiments with injured animals should be repeated with graded doses of copper to determine if copper metabolism is important in this illness.
    Medical Hypotheses 09/2013; · 1.18 Impact Factor


Available from
May 17, 2014