Article

Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies

Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA.
Journal of Pharmaceutical Sciences (Impact Factor: 3.01). 09/2012; 101(9):3062-77. DOI: 10.1002/jps.23187
Source: PubMed

ABSTRACT Since immunoglobulins are conformationally dynamic molecules in solution, we studied the effect of stabilizing and destabilizing excipients on the conformational stability and dynamics of two IgG1 monoclonal antibodies (mAbs; mAb-A and mAb-B) using a variety of biophysical approaches. Even though the two mAbs are of the same IgG1 subtype, the unfolding patterns, aggregation behavior, and pretransition dynamics of these two antibodies were strikingly different in response to external perturbations such as pH, temperature, and presence of excipients. Sucrose and arginine were identified as stabilizers and destabilizers, respectively, on the basis of their influence on conformational stability for both the IgG1 mAbs. The two excipients, however, had distinct effective concentrations and different effects on the conformational stability and pretransition dynamics of the two mAbs as measured by a combination of differential scanning calorimetry, high-resolution ultrasonic spectroscopy, and red-edge excitation shift fluorescence studies. Stabilizing concentrations of sucrose were found to decrease the internal motions of mAb-B, whereas arginine marginally increased its adiabatic compressibility in the pretransition region. Both sucrose and arginine did not influence the pretransition dynamics of mAb-A. The potential reasons for such differences in excipient effects between two IgG1 mAbs are discussed.

Download full-text

Full-text

Available from: Charles Russell Middaugh, Oct 01, 2014
1 Follower
 · 
222 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Finding excipients which mitigate protein self-association and aggregation is an important task during formulation. Here, the effect of an equimolar mixture of l-Arg and l-Glu (Arg·Glu) on colloidal and conformational stability of four monoclonal antibodies (mAb1–mAb4) at different pH is explored, with the temperatures of the on-set of aggregation (Tagg) and unfolding (Tm1) measured by static light scattering and intrinsic fluorescence, respectively. Arg·Glu increased the Tagg of all four mAbs in concentration-dependent manner, especially as pH increased to neutral. Arg·Glu also increased Tm1 of the least thermally stable mAb3, but without similar direct effect on the Tm1 of other mAbs. Raising pH itself from 5 to 7 increased Tm1 for all four mAbs. Selected mAb formulations were assessed under accelerated stability conditions for the monomer fraction remaining in solution after storage. The aggregation of mAb3 was suppressed to a greater extent by Arg·Glu than by Arg·HCl. Furthermore, Arg·Glu suppressed the aggregation of mAb1 at neutral pH such that the fraction monomer was near to that at the more typical formulation pH of 5.5. We conclude that Arg·Glu can suppress mAb aggregation with increasing temperature/pH and, importantly, under accelerated stability conditions at weakly acidic to neutral pH.
    International Journal of Pharmaceutics 10/2014; 473(1-2):126-133. DOI:10.1016/j.ijpharm.2014.06.053 · 3.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A molecular understanding of excipient effects on the interrelationship(s) between dynamics and conformational stability of proteins, such as monoclonal antibodies (mAbs), can be important for their pharmaceutical development. The current study examines stabilizing and destabilizing effects of excipients on the conformational stability and local dynamics of distinct solvent-exposed regions within an IgG1 monoclonal antibody (mAb-B). The principles of site-selective photoselection upon red-edge excitation, accompanied by acrylamide quenching of tryptophan fluorescence were employed in this study. The initiation of mAb-B thermal unfolding occurs by structural alterations in the more solvent-exposed regions of the antibody, which subsequently leads to a cascade of structural alterations in its relatively more solvent-shielded regions. In addition, an increase in internal dynamics of solvent-shielded regions made mAb-B more susceptible to thermally induced structural perturbations resulting in its global destabilization. Sucrose and arginine exert their stabilizing and destabilizing effects by predominantly influencing the conformational stability of solvent-exposed regions in mAb-B. The complex molecular effects of sucrose and arginine on local dynamics of different regions in mAb-B and their correlation with the protein's conformational stability are described within the pretransition range, at the onset temperature (T(onset) ) and at the thermal melting temperature (T(M) ). © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.
    Journal of Pharmaceutical Sciences 12/2012; 101(12). DOI:10.1002/jps.23332 · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: To develop a general strategy for optimizing monoclonal antibody (MAb) formulations. METHODS: Colloidal stabilities of four representative MAbs solutions were assessed based on the second virial coefficient (B (2)) at 20°C and 40°C, and net charges at different NaCl concentrations, and/or in the presence of sugars. Conformational stabilities were evaluated from the unfolding temperatures. The aggregation propensities were determined at 40°C and after freeze-thawing. The electrostatic potential of antibody surfaces was simulated for the development of rational formulations. RESULTS: Similar B (2) values were obtained at 20°C and 40°C, implying little dependence on temperature. B (2) correlated quantitatively with aggregation propensities at 40°C. The net charge partly correlated with colloidal stability. Salts stabilized or destabilized MAbs, depending on repulsive or attractive interactions. Sugars improved the aggregation propensity under freeze-thaw stress through improved conformational stability. Uneven and even distributions of potential surfaces were attributed to attractive and strong repulsive electrostatic interactions. CONCLUSIONS: Assessment of colloidal stability at the lowest ionic strength is particularly effective for the development of formulations. If necessary, salts are added to enhance the colloidal stability. Sugars further improved aggregation propensities by enhancing conformational stability. These behaviors are rationally predictable according to the surface potentials of MAbs.
    Pharmaceutical Research 01/2013; DOI:10.1007/s11095-012-0965-4 · 3.95 Impact Factor