Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics

Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
Journal of Medical Microbiology (Impact Factor: 2.27). 05/2012; 61(Pt 9):1194-207. DOI: 10.1099/jmm.0.042283-0
Source: PubMed

ABSTRACT Recently, much attention has been given to the use of probiotics as an adjuvant for the prevention or treatment of gastrointestinal pathology. The great advantage of therapy with probiotics is that they have few side effects such as selection of resistant bacteria or disturbance of the intestinal microbiota, which occur when antibiotics are used. Adhesion of pathogenic bacteria onto the surface of probiotics instead of onto intestinal receptors could explain part of the probiotic effect. Thus, this study evaluated the adhesion of pathogenic bacteria onto the cell wall of Saccharomyces boulardii and Saccharomyces cerevisiae strains UFMG 905, W303 and BY4741. To understand the mechanism of adhesion of pathogens to yeast, cell-wall mutants of the parental strain of Saccharomyces cerevisiae BY4741 were used because of the difficulty of mutating polyploid yeast, as is the case for Saccharomyces cerevisiae and Saccharomyces boulardii. The tests of adhesion showed that, among 11 enteropathogenic bacteria tested, only Escherichia coli, Salmonella Typhimurium and Salmonella Typhi adhered to the surface of Saccharomyces boulardii, Saccharomyces cerevisiae UFMG 905 and Saccharomyces cerevisiae BY4741. The presence of mannose, and to some extent bile salts, inhibited this adhesion, which was not dependent on yeast viability. Among 44 cell-wall mutants of Saccharomyces cerevisiae BY4741, five lost the ability to fix the bacteria. Electron microscopy showed that the phenomenon of yeast-bacteria adhesion occurred both in vitro and in vivo (in the digestive tract of dixenic mice). In conclusion, some pathogenic bacteria were captured on the surface of Saccharomyces boulardii, Saccharomyces cerevisiae UFMG 905 and Saccharomyces cerevisiae BY4741, thus preventing their adhesion to specific receptors on the intestinal epithelium and their subsequent invasion of the host.

Download full-text


Available from: Paulo Filemon Paolucci Pimenta, Jun 18, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters, resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (> 96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest.
    09/2013; 5(1). DOI:10.4161/bioe.26271
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms) and prebiotics (food components) have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota, and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri) and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host.
    Frontiers in Immunology 01/2013; 4:445. DOI:10.3389/fimmu.2013.00445
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kefir-a traditional beverage whose consumption has been associated with health benefits-is a logical natural product to investigate for new probiotic strains. The aim of the present work was to isolate and identify kefir yeasts and select those with acid and bile tolerance to study their adhesion to epithelial cells and their transit through mouse gut. From 4 milky and 3 sugary kefir grains, 34 yeast strains were isolated and identified by means of classical microbiological and molecular-genetic methods (whole-cell protein pattern, internal-transcribed-spacer amplification, and analysis of restriction-fragment-length polymorphisms). We identified 4 species belonging to 3 genera-Saccharomyces cerevisiae (15 strains), Saccharomyces unisporus (6 strains), Issatchenkia occidentalis (4 strains), and Kluyveromyces marxianus (9 strains)-and selected 13 strains on the basis of resistance to low pH and bile salts. Among the strains selected, Kluyveromyces marxianus CIDCA 8154 and Saccharomyces cerevisiae CIDCA 8112 were further studied. Both strains evidenced the capacity to adhere to epithelial intestine-derived cells in vitro and to survive passage through the gastrointestinal tract of BALB/c mice. The investigation of the potential probiotic features of these kefir-yeast strains should be useful for the development of novel functional foods.
    World Journal of Microbiology and Biotechnology (Formerly MIRCEN Journal of Applied Microbiology and Biotechnology) 07/2013; DOI:10.1007/s11274-013-1419-9 · 1.35 Impact Factor