Co-Treatment of Dichloroacetate, Omeprazole and Tamoxifen Exhibited Synergistically Antiproliferative Effect on Malignant Tumors: In Vivo Experiments and a Case Report

Kamui Medical CO., Ltd., Tokyo, Japan.
Hepato-gastroenterology (Impact Factor: 0.93). 06/2012; 59(116):994-6. DOI: 10.5754/hge10507
Source: PubMed

ABSTRACT Omeprazole (OPZ) and tamoxifen (TAM) strengthen the effects of anticancer drugs and dichloroacetate (DCA) inhibits tumor growth. This study assesses the synergistic effects of these drugs.
HT1080 human fibrosarcoma cells and WI-38 human fibroblasts were used as test and control cells, respectively. DCA, OPZ and TAM alone or in combination were applied and cells were counted after a one week culture. The combination of these drugs was prescribed to a cholangiocarcinoma patient and serum CA19-9 was monitored.
DCA combined with OPZ and TAM exhibited more potent antitumor activity than DCA alone in HT1080 fibrosarcoma cells, but did not influence proliferation of WI-38 human fibroblasts. All these drugs induce caspase-dependent cell growth inhibition through superoxide production. Since they can be taken orally and have been used clinically without major side effects, it was thought that this combination therapy would be a readily translated strategy to treat malignant tumors. Under the patient's consent these three drugs were prescribed to a 51-year old female cholangiocarcinoma patient to whom neither gemcitabine+S-1 nor adoptive immunotherapy with natural killer cells was effective. Disease progression was successfully blocked (the rise of serum CA19-9 value) for three months, also confirmed by CT.
Although findings are preliminary, this study is a sample of translational research. Since there is no consensus regarding treatment strategy of cholangiocarcinoma and chemotherapy has only limited efficacy, it is expected that it might open a new possibility of treatment.

92 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The metabolic properties of cancer cells diverge significantly from those of normal cells. Energy production in cancer cells is abnormally dependent on aerobic glycolysis. In addition to the dependency on glycolysis, cancer cells have other atypical metabolic characteristics such as increased fatty acid synthesis and increased rates of glutamine metabolism. Emerging evidence shows that many features characteristic to cancer cells, such as dysregulated Warburg-like glucose metabolism, fatty acid synthesis and glutaminolysis are linked to therapeutic resistance in cancer treatment. Therefore, targeting cellular metabolism may improve the response to cancer therapeutics and the combination of chemotherapeutic drugs with cellular metabolism inhibitors may represent a promising strategy to overcome drug resistance in cancer therapy. Recently, several review articles have summarized the anticancer targets in the metabolic pathways and metabolic inhibitor-induced cell death pathways, however, the dysregulated metabolism in therapeutic resistance, which is a highly clinical relevant area in cancer metabolism research, has not been specifically addressed. From this unique angle, this review article will discuss the relationship between dysregulated cellular metabolism and cancer drug resistance and how targeting of metabolic enzymes, such as glucose transporters, hexokinase, pyruvate kinase M2, lactate dehydrogenase A, pyruvate dehydrogenase kinase, fatty acid synthase and glutaminase can enhance the efficacy of common therapeutic agents or overcome resistance to chemotherapy or radiotherapy.
    Cell Death & Disease 03/2013; 4(3):e532. DOI:10.1038/cddis.2013.60 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to determine if ultraviolet light (UVC) irradiation in combination with fluorescence-guided surgery (FGS) can eradicate metastatic human pancreatic cancer in orthotopic nude-mouse models. Two weeks after orthotopic implantation of human MiaPaCa-2 pancreatic cancer cells, expressing green fluorescent protein (GFP), in nude mice, bright-light surgery (BLS) was performed on all tumor-bearing mice (n = 24). After BLS, mice were randomized into 3 treatment groups; BLS-only (n = 8) or FGS (n = 8) or FGS-UVC (n = 8). The residual tumors were resected using a hand-held portable imaging system under fluorescence navigation in mice treated with FGS and FGS-UVC. The surgical resection bed was irradiated with 2700 J/m2 UVC (254 nm) in the mice treated with FGS-UVC. The average residual tumor area after FGS (n = 16) was significantly smaller than after BLS only (n = 24) (0.135±0.137 mm2 and 3.338±2.929 mm2, respectively; p = 0.007). The BLS treated mice had significantly reduced survival compared to FGS- and FGS-UVC-treated mice for both relapse-free survival (RFS) (p<0.001 and p<0.001, respectively) and overall survival (OS) (p<0.001 and p<0.001, respectively). FGS-UVC-treated mice had increased RFS and OS compared to FGS-only treated mice (p = 0.008 and p = 0.025, respectively); with RFS lasting at least 150 days indicating the animals were cured. The results of the present study suggest that UVC irradiation in combination with FGS has clinical potential to increase survival.
    PLoS ONE 06/2014; 9(6):e99977. DOI:10.1371/journal.pone.0099977 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We reviewed the anti-cancer effects of DCA, an orphan drug long used as an investigational treatment for various acquired and congenital disorders of mitochondrial intermediary metabolism. Inhibition by DCA of mitochondrial pyruvate dehydrogenase kinases and subsequent reactivation of the pyruvate dehydrogenase complex and oxidative phosphorylation is the common mechanism accounting for the drug's anti-neoplastic effects. At least 2 fundamental changes in tumor metabolism are induced by DCA that antagonize tumor growth, metastases and survival: the first is the redirection of glucose metabolism from glycolysis to oxidation (reversal of the Warburg effect), leading to inhibition of proliferation and induction of caspase-mediated apoptosis. These effects have been replicated in both human cancer cell lines and in tumor implants of diverse germ line origin. The second fundamental change is the oxidative removal of lactate, via pyruvate, and the co-incident buffering of hydrogen ions by dehydrogenases located in the mitochondrial matrix. Preclinical studies demonstrate that DCA has additive or synergistic effects when used in combination with standard agents designed to modify tumor oxidative stress, vascular remodeling, DNA integrity or immunity. These findings and limited clinical results suggest that potentially fruitful areas for additional clinical trials include 1) adult and pediatric high grade astrocytomas; 2) BRAF-mutant cancers, such as melanoma, perhaps combined with other pro-oxidants; 3) in which resistance to standard platinum-class drugs alone may be overcome with combination therapy; and 4) tumors of endodermal origin, in which extensive experimental research has demonstrated significant anti-proliferative, pro-apoptotic effects of DCA, leading to improved host survival.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 08/2014; 1846(2). DOI:10.1016/j.bbcan.2014.08.005 · 7.85 Impact Factor
Show more