SnapShot: Axonal Transport

University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA.
Cell (Impact Factor: 33.12). 05/2012; 149(4):950-950.e1. DOI: 10.1016/j.cell.2012.05.001
Source: PubMed
  • [Show abstract] [Hide abstract]
    ABSTRACT: The past decade has seen an explosion of DNA sequencing activities and many mutations and genetic variances underlying neurological and neurodegenerative diseases have been determined. This wealth of genetic data is now placed in molecular pathways revealing the nodes that underlie the disrupted processes. Many mutations in neurological diseases affect proteins controlling endosomal/lysosomal transport. Although the age of onset of these diseases range from juvenile [i.e., Niemann-Pick type C (NPC) and Charcot-Marie-Tooth (CMT) disease] to late onset (Parkinson's and Alzheimer's disease), deregulation of endosomal transport is a common theme. This review summarizes how elucidating the genetic basis for the various neurological diseases has advanced our understanding of the endo-lysosomal system and why the various mutations all translate into similar disease phenotypes.
    Trends in Neurosciences 01/2014; DOI:10.1016/j.tins.2013.11.006 · 12.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neck-linker is a structurally conserved region among most members of the kinesin superfamily of molecular motor proteins that is critical for kinesin's processive transport of intracellular cargo along the microtubule surface. Variation in the neck-linker length has been shown to directly modulate processivity in different kinesin families; for example, kinesin-1, with a shorter neck-linker, is more processive than kinesin-2. Although small differences in processivity are likely obscured in vivo by the coupling of most cargo to multiple motors, longer and more flexible neck-linkers may allow different kinesins to navigate more efficiently around the many obstacles, including microtubule-associated proteins (MAPs), that are found on the microtubule surface within cells. We hypothesize that, due to its longer neck-linker, kinesin-2 can more easily navigate obstacles (e.g., MAPs) on the microtubule surface than kinesin-1. We used total internal reflection fluorescence microscopy to observe single-molecule motility from different kinesin-1 and kinesin-2 neck-linker chimeras stepping along microtubules in the absence or presence of two Tau isoforms, 3RS-Tau and 4RL-Tau, both of which are MAPs that are known to differentially affect kinesin-1 motility. Our results demonstrate that unlike kinesin-1, kinesin-2 is insensitive to the presence of either Tau isoform, and appears to have the ability to switch protofilaments while stepping along the microtubule when challenged by an obstacle, such as Tau. Thus, although kinesin-1 may be more processive, the longer neck-linker length of kinesin-2 allows it to be better optimized to navigate the complex microtubule landscape. These results provide new insight, to our knowledge, into how kinesin-1 and kinesin-2 may work together for the efficient delivery of cargo in cells.
    Biophysical Journal 04/2014; 106(8):1691-700. DOI:10.1016/j.bpj.2014.02.034 · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptional regulation of genes by cyclic AMP response element binding protein (CREB) is essential for the maintenance of long-term memory. Moreover, retrograde axonal trafficking of CREB in response to nerve growth factor (NGF) is critical for the survival of developing primary sensory neurons. We have previously demonstrated that hindpaw injection of interleukin-6 (IL-6) induces mechanical hypersensitivity and hyperalgesic priming that is prevented by the local injection of protein synthesis inhibitors. However, proteins that are locally synthesized that might lead to this effect have not been identified. We hypothesized that retrograde axonal trafficking of nascently synthesized CREB might link local, activity-dependent translation to nociceptive plasticity. To test this hypothesis, we determined if IL-6 enhances the expression of CREB and if it subsequently undergoes retrograde axonal transport. IL-6 treatment of sensory neurons in vitro caused an increase in CREB protein and in vivo treatment evoked an increase in CREB in the sciatic nerve consistent with retrograde transport. Importantly, co-injection of IL-6 with the methionine analogue azido-homoalanine (AHA), to assess nascently synthesized proteins, revealed an increase in CREB containing AHA in the sciatic nerve 2 hrs post injection, indicating retrograde transport of nascently synthesized CREB. Behaviorally, blockade of retrograde transport by disruption of microtubules or inhibition of dynein or intrathecal injection of cAMP response element (CRE) consensus sequence DNA oligonucleotides, which act as decoys for CREB DNA binding, prevented the development of IL-6-induced mechanical hypersensitivity and hyperalgesic priming. Consistent with previous studies in inflammatory models, intraplantar IL-6 enhanced the expression of BDNF in dorsal root ganglion (DRG). This effect was blocked by inhibition of retrograde axonal transport and by intrathecal CRE oligonucleotides. Collectively, these findings point to a novel mechanism of axonal translation and retrograde trafficking linking locally-generated signals to long-term nociceptive sensitization.
    Molecular Pain 07/2014; 10(1):45. DOI:10.1186/1744-8069-10-45 · 3.53 Impact Factor


Available from
Jun 16, 2014